贵州省兴仁县达标名校2021-2022学年中考四模数学试题含解析_第1页
贵州省兴仁县达标名校2021-2022学年中考四模数学试题含解析_第2页
贵州省兴仁县达标名校2021-2022学年中考四模数学试题含解析_第3页
贵州省兴仁县达标名校2021-2022学年中考四模数学试题含解析_第4页
贵州省兴仁县达标名校2021-2022学年中考四模数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省兴仁县达标名校2021-2022学年中考四模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列运算正确的()A.(b2)3=b5 B.x3÷x3=x C.5y3•3y2=15y5 D.a+a2=a32.已知是一个单位向量,、是非零向量,那么下列等式正确的是()A. B. C. D.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25°C.20° D.15°4.计算(1-)÷的结果是()A.x-1 B. C. D.5.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A.50,50 B.50,30 C.80,50 D.30,506.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是A.有两个相等的实数根 B.有两个异号的实数根C.有两个不相等的实数根 D.没有实数根7.下列计算正确的是()A.(﹣8)﹣8=0 B.3+3=33 C.(﹣3b)2=9b2 D.a6÷a2=a38.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34° B.56° C.66° D.54°9.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E10.一元二次方程的根的情况是A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判断二、填空题(共7小题,每小题3分,满分21分)11.图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD=.12.的算术平方根是_______.13.已知关于x的方程x2+mx+4=0有两个相等的实数根,则实数m的值是______.14.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m.15.用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣__)2=__.16.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.17.若分式的值为正,则实数的取值范围是__________________.三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.求:△ABD的面积.19.(5分)如图,是的外接圆,是的直径,过圆心的直线于,交于,是的切线,为切点,连接,.(1)求证:直线为的切线;(2)求证:;(3)若,,求的长.20.(8分)如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.21.(10分)解方程.22.(10分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高AB(结果保留根号).23.(12分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?24.(14分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.详解:A、(b2)3=b6,故此选项错误;B、x3÷x3=1,故此选项错误;C、5y3•3y2=15y5,正确;D、a+a2,无法计算,故此选项错误.故选C.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.2、B【解析】

长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A.由于单位向量只限制长度,不确定方向,故错误;B.符合向量的长度及方向,正确;C.得出的是a的方向不是单位向量,故错误;D.左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.3、B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,4、B【解析】

先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【详解】解:原式=(-)÷=•=,故选B.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.5、A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A.点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.6、A【解析】

根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.7、C【解析】选项A,原式=-16;选项B,不能够合并;选项C,原式=9b2;选项D,原式=8、B【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.9、C【解析】

根据平行线性质和全等三角形的判定定理逐个分析.【详解】由,得∠B=∠D,因为,若≌,则还需要补充的条件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定.解题关键点:熟记全等三角形判定定理.10、A【解析】

把a=1,b=-1,c=-1,代入,然后计算,最后根据计算结果判断方程根的情况.【详解】方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入计算是解题的突破口.二、填空题(共7小题,每小题3分,满分21分)11、30°【解析】试题分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.∵OA=OC,∴∠C=∠OAC=30°.∵∠C和∠AOD是同弧所对的圆周角和圆心角,∴∠AOD=2∠C=60°.∴∠BOD=60°-30°=30°.12、3【解析】

根据算术平方根定义,先化简,再求的算术平方根.【详解】因为=9所以的算术平方根是3故答案为3【点睛】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,-1的特殊性质.13、±4【解析】分析:由方程有两个相等的实数根,得到根的判别式等于0,列出关于m的方程,求出方程的解即可得到m的值.详解:∵方程有两个相等的实数根,∴解得:故答案为点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.14、【解析】分析:首先连接AO,求出AB的长度是多少;然后求出扇形的弧长弧BC为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.详解:如图1,连接AO,∵AB=AC,点O是BC的中点,∴AO⊥BC,又∵∴∴∴弧BC的长为:(m),∴将剪下的扇形围成的圆锥的半径是:(m),∴圆锥的高是:故答案为.点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键.15、1【解析】原方程为3x2−6x+1=0,二次项系数化为1,得x2−2x=−,即x2−2x+1=−+1,所以(x−1)2=.故答案为:1,.16、1.【解析】∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.∴△DOE的周长="OD+OE+DE="OD+(BC+CD)=3+9=1,即△DOE的周长为1.17、x>0【解析】【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.【详解】∵分式的值为正,∴x与x2+2的符号同号,∵x2+2>0,∴x>0,故答案为x>0.【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.三、解答题(共7小题,满分69分)18、2.【解析】试题分析:由勾股定理的逆定理证明△ADC是直角三角形,∠C=90°,再由勾股定理求出BC,得出BD,即可得出结果.解:在△ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,∴△ADC是直角三角形,∠C=90°,在Rt△ABC中,BC===16,∴BD=BC﹣DC=16﹣9=7,∴△ABD的面积=×7×12=2.19、(1)证明见解析;(2)证明见解析;(3)1.【解析】

(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线;

(2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证.【详解】(1)连接OB,

∵PB是⊙O的切线,

∴∠PBO=90°.

∵OA=OB,BA⊥PO于D,

∴AD=BD,∠POA=∠POB.

又∵PO=PO,

∴△PAO≌△PBO.

∴∠PAO=∠PBO=90°,

∴直线PA为⊙O的切线.(2)由(1)可知,,,,=90,,,,即,是直径,是半径,,,整理得;(3)是中点,是中点,是的中位线,,,,是直角三角形,在中,,,,,,则,、是半径,,在中,,,由勾股定理得:,即,解得:或(舍去),,.【点睛】本题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.20、.【解析】试题分析:可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.试题解析:∵∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC.∴,∵AD=2,AB=6,∴.∴.∴AC=.考点:相似三角形的判定与性质.21、原分式方程无解.【解析】

根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1检验:当x=1时,(x﹣1)(x+2)=0,∴原方程无解.【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法.22、6+【解析】

如下图,过点C作CF⊥AB于点F,设AB长为x,则易得AF=x-4,在Rt△ACF中利用∠的正切函数可由AF把CF表达出来,在Rt△ABE中,利用∠的正切函数可由AB把BE表达出来,这样结合BD=CF,DE=BD-BE即可列出关于x的方程,解方程求得x的值即可得到AB的长.【详解】解:如图,过点C作CF⊥AB,垂足为F,设AB=x,则AF=x-4,∵在Rt△ACF中,tan∠=,∴CF==BD,同理,Rt△ABE中,BE=,∵BD-BE=DE,∴-=3,解得x=6+.答:树高AB为(6+)米.【点睛】作出如图所示的辅助线,利用三角函数把CF和BE分别用含x的式子表达出来是解答本题的关键.23、(1)50;4;5;画图见解析;(2)144°;(3)64【解析】

(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;

(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;

(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.【详解】解:(1)∵课外阅读达3小时的共10人,占总人数的20%,∴=50(人).∵课外阅读4小时的人数是32%,∴50×32%=16(人),∴男生人数=16﹣8=8(人);∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,∴中位数是4小时,众数是5小时.补全图形如图所示.故答案为50,4,5;(2)∵课外阅读5小时的人数是20人,∴×360°=144°.故答案为144°;(3)∵课外阅读6小时的人数是4人,∴800×=64(人).答:九年级一周课外阅读时间为6小时的学生大约有64人.【点睛】本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.24、(1)BD,CE的关系是相等;(2)或;(3)1,1【解析】分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,进而得到PD=;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,进而得出PB=,PD=BD+PB=;(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论