版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州第八中学2025届高三下学期高考模拟考试数学试题(文史类)试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A. B. C. D.2.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件3.己知集合,,则()A. B. C. D.4.已知满足,则()A. B. C. D.5.设,均为非零的平面向量,则“存在负数,使得”是“”的A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件6.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.07.已知等差数列中,,,则数列的前10项和()A.100 B.210 C.380 D.4008.将函数的图像向左平移个单位得到函数的图像,则的最小值为()A. B. C. D.9.函数在的图象大致为()A. B.C. D.10.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A. B. C. D.11.下列说法正确的是()A.“若,则”的否命题是“若,则”B.“若,则”的逆命题为真命题C.,使成立D.“若,则”是真命题12.已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为______.14.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米.15.满足线性的约束条件的目标函数的最大值为________16.如图所示梯子结构的点数依次构成数列,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数不存在单调递减区间,求实数的取值范围;(2)若函数的两个极值点为,,求的最小值.18.(12分)已知数列满足且(1)求数列的通项公式;(2)求数列的前项和.19.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于两点,的顶点也在曲线上运动,求面积的最大值.20.(12分)如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.(1)证明:平面.(2)求直线与平面所成角的正弦值.21.(12分)已知椭圆的焦点在轴上,且顺次连接四个顶点恰好构成了一个边长为且面积为的菱形.(1)求椭圆的方程;(2)设,过椭圆右焦点的直线交于、两点,若对满足条件的任意直线,不等式恒成立,求的最小值.22.(10分)如图,直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.2.A【解析】
根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题3.C【解析】
先化简,再求.【详解】因为,又因为,所以,故选:C.本题主要考查一元二次不等式的解法、集合的运算,还考查了运算求解能力,属于基础题.4.A【解析】
利用两角和与差的余弦公式展开计算可得结果.【详解】,.故选:A.本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.5.B【解析】
根据充分条件、必要条件的定义进行分析、判断后可得结论.【详解】因为,均为非零的平面向量,存在负数,使得,所以向量,共线且方向相反,所以,即充分性成立;反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立.所以“存在负数,使得”是“”的充分不必要条件.故选B.判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确.6.C【解析】
画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.7.B【解析】
设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,,,.故选:B.本题考查等差数列的基本量计算以及前项和,属于基础题.8.B【解析】
根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.【详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,,当时,取得最小值为,故选:.本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.9.B【解析】
先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案.【详解】是奇函数,排除C,D;,排除A.故选:B.本题考查函数图象的判断,属于常考题.10.B【解析】
将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.本题主要考查了枚举法求古典概型的方法,属于基础题型.11.D【解析】选项A,否命题为“若,则”,故A不正确.选项B,逆命题为“若,则”,为假命题,故B不正确.选项C,由题意知对,都有,故C不正确.选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确.选D.12.B【解析】
直线的倾斜角为,易得.设双曲线C的右焦点为E,可得中,,则,所以双曲线C的离心率为.故选B.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
取的中点,设等边三角形的中心为,连接.根据等边三角形的性质可求得,,由等腰直角三角形的性质,得,根据面面垂直的性质得平面,,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.【详解】在等边三角形中,取的中点,设等边三角形的中心为,连接.由,得,,由已知可得是以为斜边的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,为三棱锥外接球的球心,外接球半径,三棱锥外接球的表面积为.故答案为:本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.14.【解析】
建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.【详解】以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,所以,所以,,则,则,当时,,则单调递减,当时,,则单调递增,所以当时,最短,此时.故答案为:本题考查导数的实际应用,属于中档题.15.1【解析】
作出不等式组表示的平面区域,将直线进行平移,利用的几何意义,可求出目标函数的最大值。【详解】由,得,作出可行域,如图所示:平移直线,由图像知,当直线经过点时,截距最小,此时取得最大值。由,解得,代入直线,得。本题主要考查简单的线性规划问题的解法——平移法。16.【解析】
根据图像归纳,根据等差数列求和公式得到答案.【详解】根据图像:,,故,故.故答案为:.本题考查了等差数列的应用,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】分析:(1)先求导,再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范围.(2)先由得到,再求得,再构造函数再利用导数求其最小值.详解:(1)由函数有意义,则由且不存在单调递减区间,则在上恒成立,上恒成立(2)由知,令,即由有两个极值点故为方程的两根,,,则由由,则上单调递减,即由知综上所述,的最小值为.点睛:(1)本题主要考查利用导数求函数的单调区间和极值,考查利用导数求函数的最值,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的难点有两个,其一是求出,其二是构造函数再利用导数求其最小值.18.(1);(2)【解析】
(1)根据已知可得数列为等比数列,即可求解;(2)由(1)可得为等比数列,根据等比数列和等差数列的前项和公式,即可求解.【详解】(1)因为,所以,又所以数列为等比数列,且首项为,公比为.故(2)由(1)知,所以所以本题考查等比数列的定义及通项公式、等差数列和等比数列的前项和,属于基础题.19.(1):,:;(2)【解析】
(1)由直线参数方程消去参数即可得直线的普通方程,根据极坐标方程和直角坐标方程互化的公式即可得曲线的直角坐标方程;(2)由即可得的底,由点到直线的距离的最大值为即可得高的最大值,即可得解.【详解】(1)由消去参数得直线的普通方程为,由得,曲线的直角坐标方程为;(2)曲线即,圆心到直线的距离,所以,又点到直线的距离的最大值为,所以面积的最大值为.本题考查了参数方程、极坐标方程和直角坐标方程的互化,考查了直线与圆的位置关系,属于中档题.20.(1)证明见解析(2)【解析】
(1)先证,再证,由可得平面,从而推出平面;(2)建立空间直角坐标系,求出平面的法向量与,坐标代入线面角的正弦值公式即可得解.【详解】(1)证明:连接,,由图1知,四边形为菱形,且,所以是正三角形,从而.同理可证,,所以平面.又,所以平面,因为平面,所以平面平面.易知,且为的中点,所以,所以平面.(2)解:由(1)可知,,且四边形为正方形.设的中点为,以为原点,以,,所在直线分别为,,轴,建立空间直角坐标系,则,,,,,所以,,.设平面的法向量为,由得取.设直线与平面所成的角为,所以,所以直线与平面所成角的正弦值为.本题考查线面垂直的证明,直线与平面所成的角,要求一定的空间想象能力、运算求解能力和推理论证能力,属于基础题.21.(1)(2)【解析】
(1)由已知条件列出关于和的方程,并计算出和的值,jike得到椭圆的方程.(2)设出点和点坐标,运用点坐标计算出,分类讨论直线的斜率存在和不存在两种情况,求解出的最小值.【详解】(1)由己知得:,解得,所以,椭圆的方程(2)设,.当直线垂直于轴时,,且此时,,当直线不垂直于轴时,设直线由,得.,.要使恒成立,只需,即最小值为本题考查了求解椭圆方程以及直线与椭圆的位置关系,求解过程中需要分类讨论直线的斜率存在和不存在两种情况,并运用根与系数的关系转化为只含一个变量的表达式进行求解,需要掌握解题方法,并且有一定的计算量.22.(1)p=4;(2)OA⋅【解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广告合同协议书:杂志广告合同范本
- 吉林省落叶松木材购销合同
- 亲子活动安全承诺书
- 业主提案提交指南
- 意外事故赔偿协议书标准范本
- 护坡施工合同书格式
- 土地租赁合同补充协议的签订注意事项
- 住宅建筑工程合同样本
- 2024三人股权合作协议书
- 简单版房屋租赁合同撰写心得
- 消防器材知识讲解(课堂PPT)
- 英语教学中让学生当“小老师”的尝试-精选教育文档
- 机械密封工作原理演示版
- 清水池清洗消毒方案
- 血气分析全解ppt课件
- 二年级 Thelifeofabutterfly蝴蝶的生长过程
- 入网申请表模板
- 48个国际音标对应的字母组合及例词(WORD可打印版)
- 安装工程质量通病及消除通病措施(安八)
- 标化工地安全文明施工管理细则
- 2022年冀教版六年级上册英语期末试卷及答案
评论
0/150
提交评论