版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福州市重点中学高三下学期期末考试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,且,则的值为()A. B. C. D.2.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则()A. B. C. D.3.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元4.已知双曲线:的左、右两个焦点分别为,,若存在点满足,则该双曲线的离心率为()A.2 B. C. D.55.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A. B. C. D.6.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A. B. C. D.7.已知,其中是虚数单位,则对应的点的坐标为()A. B. C. D.8.已知是虚数单位,若,则()A. B.2 C. D.109.若某几何体的三视图如图所示,则该几何体的表面积为()A.240 B.264 C.274 D.28210.一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为()A. B. C. D.11.已知实数,满足约束条件,则目标函数的最小值为A. B.C. D.12.设是虚数单位,则“复数为纯虚数”是“”的()A.充要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.在棱长为6的正方体中,是的中点,点是面,所在平面内的动点,且满足,则三棱锥的体积的最大值是__________.14.在中,内角的对边分别是,若,,则____.15.满足约束条件的目标函数的最小值是.16.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.18.(12分)如图,在直角中,,,,点在线段上.(1)若,求的长;(2)点是线段上一点,,且,求的值.19.(12分)已知抛物线,焦点为,直线交抛物线于两点,交抛物线的准线于点,如图所示,当直线经过焦点时,点恰好是的中点,且.(1)求抛物线的方程;(2)点是原点,设直线的斜率分别是,当直线的纵截距为1时,有数列满足,设数列的前n项和为,已知存在正整数使得,求m的值.20.(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.21.(12分)近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:x13412y51.522.58y与x可用回归方程(其中,为常数)进行模拟.(Ⅰ)若该农户产出的该新奇水果的价格为150元/箱,试预测该新奇水果100箱的利润是多少元.|.(Ⅱ)据统计,10月份的连续11天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示.(i)若从箱数在内的天数中随机抽取2天,估计恰有1天的水果箱数在内的概率;(ⅱ)求这11天该农户每天为甲地配送的该新奇水果的箱数的平均值.(每组用该组区间的中点值作代表)参考数据与公式:设,则0.541.81.530.45线性回归直线中,,.22.(10分)已知数列满足,且,,成等比数列.(1)求证:数列是等差数列,并求数列的通项公式;(2)记数列的前n项和为,,求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
由及得到、,进一步得到,再利用两角差的正切公式计算即可.【详解】因为,所以,又,所以,,所以.故选:A.本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.2.B【解析】
设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,,,,,,,,可得,,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.3.A【解析】
根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.4.B【解析】
利用双曲线的定义和条件中的比例关系可求.【详解】.选B.本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式.5.B【解析】
求得基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,所以乙丙两人恰好参加同一项活动的概率为,故选B.本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.6.D【解析】双曲线的渐近线方程是,所以,即,,即,,故选D.7.C【解析】
利用复数相等的条件求得,,则答案可求.【详解】由,得,.对应的点的坐标为,,.故选:.本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题.8.C【解析】
根据复数模的性质计算即可.【详解】因为,所以,,故选:C本题主要考查了复数模的定义及复数模的性质,属于容易题.9.B【解析】
将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,,,所以表面积.故选B项.本题考查三视图还原几何体,求组合体的表面积,属于中档题10.A【解析】
求出满足条件的正的面积,再求出满足条件的正内的点到顶点、、的距离均不小于的图形的面积,然后代入几何概型的概率公式即可得到答案.【详解】满足条件的正如下图所示:其中正的面积为,满足到正的顶点、、的距离均不小于的图形平面区域如图中阴影部分所示,阴影部分区域的面积为.则使取到的点到三个顶点、、的距离都大于的概率是.故选:A.本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题.11.B【解析】
作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值.【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时.故选B.本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键.12.D【解析】
结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可判定选项.【详解】若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.故选:D本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据与相似,,过作于,利用体积公式求解OP最值,根据勾股定理得出,,利用函数单调性判断求解即可.【详解】∵在棱长为6的正方体中,是的中点,点是面所在平面内的动点,且满足,又,∴与相似∴,即,过作于,设,,∴,化简得:,,根据函数单调性判断,时,取得最大值36,,在正方体中平面.三棱锥体积的最大值为本题考查三角形相似,几何体体积以及函数单调性的综合应用,难度一般.14.【解析】
由,根据正弦定理“边化角”,可得,根据余弦定理,结合已知联立方程组,即可求得角.【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:.由故答案为:.本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.15.-2【解析】
可行域是如图的菱形ABCD,代入计算,知为最小.16.【解析】记小球落入袋中的概率,则,又小球每次遇到黑色障碍物时一直向左或者一直向右下落,小球将落入袋,所以有,则.故本题应填.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2).【解析】试题分析:(1)当时;(2)由等价于,解之得.试题解析:(1)当时,.解不等式,得.因此,的解集为.(2)当时,,当时等号成立,所以当时,等价于.①当时,①等价于,无解.当时,①等价于,解得.所以的取值范围是.考点:不等式选讲.18.(1)3;(2).【解析】
(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程组即可.【详解】(1)在中,已知,,,由正弦定理,得,解得.(2)因为,所以,解得.在中,由余弦定理得,,即,,故.本题考查正余弦定理在解三角形中的应用,考查学生的计算能力,是一道中档题.19.(1)(2)【解析】
(1)设出直线的方程,再与抛物线联立方程组,进而求得点的坐标,结合弦长即可求得抛物线的方程;(2)设直线的方程,运用韦达定理可得,可得之间的关系,再运用进行裂项,可求得,解不等式求得的值.【详解】解:(1)设过抛物线焦点的直线方程为,与抛物线方程联立得:,设,所以,,,所以抛物线方程为(2)设直线方程为,,,,,,由得.本题考查了直线与抛物线的关系,考查了韦达定理和运用裂项法求数列的和,考查了运算能力,属于中档题.20.(1)元;(2)32家;(3)分布列见解析;【解析】
(1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;(2)求出的频率即可;(3)中的个数的所有可能取值为,,,求出可能值的概率,得到分布列,由期望公式即可求解.【详解】(1)频率分布直方图销售额的平均值为千元,所以销售额的平均值为元;(2)不低于元的有家(3)销售额在的店铺有家,销售额在的店铺有家.选取两家,设销售额在的有家.则的所有可能取值为,,.,,所以的分布列为数学期望本题考查应用频率分布直方图求平均数和频数,考查离散型随机变量的分布列和期望,属于基础题.21.(Ⅰ)1131;(Ⅱ)(i);(ⅱ)125箱【解析】
(Ⅰ)根据参考数据得到和,代入得到回归直线方程,,再代入求成本,最后代入利润公式;(Ⅱ)(ⅰ)首先分别计算水果箱数在和内的天数,再用编号列举基本事件的方法求概率;(ⅱ)根据频率分布直方图直接计算结果.【详解】(Ⅰ)根据题意,,所以,所以.又,所以.所以时,(千元),即该新奇水果100箱的成本为8314元,故该新奇水果100箱的利润.(Ⅱ)(i)根据频率分布直方图,可知水果箱数在内的天数为设这两天分别为a,b,水果箱数在内的天数为,设这四天分别为A,B,C,D,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《人体解剖生理学》2023-2024学年第一学期期末试卷
- 淮阴师范学院《篮球》2021-2022学年第一学期期末试卷
- 淮阴师范学院《装饰雕塑》2022-2023学年第一学期期末试卷
- 黄山学院《电磁场与电磁波》2022-2023学年期末试卷
- 淮阴师范学院《伴奏与弹唱》2023-2024学年第一学期期末试卷
- DB6505T188-2024花生病虫害绿色防控技术规程
- 关于进一步做好全员安全生产培训工作的通知修改版
- 机器人在安全监控服务的创新考核试卷
- 污水处理中的藻类光合作用技术研究考核试卷
- 化学纤维在人力资源招聘等行业的应用考核试卷
- 防雷设施设备巡查表1200字
- 中小学衔接教育
- 2023年军队文职人员(数学3+化学)科目考试题库(浓缩500多题)
- 大学生劳动教育通论知到章节答案智慧树2023年大连海洋大学
- 国网基建各专业考试题库大全-质量专业-下(判断题汇总)
- 傅雷家书读后感3000字(3篇)
- 山西省普通高级中学办学基本标准
- 房建工程二次预埋施工技术交底强弱电管线预埋
- YY 0636.1-2008医用吸引设备第1部分:电动吸引设备安全要求
- 高速公路常见边坡防护类型及施工要点课件
- 电子工艺设计及技术课件
评论
0/150
提交评论