版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2024年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.(3分)实数2的倒数是()A.﹣2 B.2 C.﹣ D.2.(3分)“致中和,天地位焉,万物育焉”,对称之美随处可见.下列选项分别是扬州大学、扬州中国大运河博物馆、扬州五亭桥、扬州志愿服务的标识,其中的轴对称图形是()A. B. C. D.3.(3分)下列运算中正确的是()A.(a﹣b)2=a2﹣b2 B.5a﹣2a=3a C.(a3)2=a5 D.3a2•2a3=6a64.(3分)第8个全国近视防控宣传教育月的主题是“有效减少近视发生,共同守护光明未来”.某校积极响应,开展视力检查.某班45名同学视力检查数据如下表:视力4.34.44.54.64.74.84.95.0人数1447111053这45名同学视力检查数据的众数是()A.4.6 B.4.7 C.4.8 D.4.95.(3分)在平面直角坐标系中,点P(1,2)关于坐标原点的对称点P′的坐标为()A.(﹣1,﹣2) B.(﹣1,2) C.(1,﹣2) D.(1,2)6.(3分)如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥 B.圆锥 C.三棱柱 D.长方体7.(3分)在平面直角坐标系中,函数y=的图象与坐标轴的交点个数是()A.0 B.1 C.2 D.48.(3分)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,…,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为()A.676 B.674 C.1348 D.1350二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)近年来扬州经济稳步发展,2024年4月26日,扬州市统计局、国家统计局扬州调查队联合发布一季度全市实现地区生产总值约18700000万元,把18700000这个数用科学记数法表示为.10.(3分)分解因式2x2﹣4x+2=.11.(3分)数学兴趣小组做抛掷一枚瓶盖的实验后,整理的实验数据如下表:累计抛掷次数501002003005001000200030005000盖面朝上次数2854106157264527105615872650盖面朝上频率0.5600.5400.5300.5230.5280.5270.5280.5290.530根据以上实验数据可以估计出“盖面朝上”的概率约为.(精确到0.01)12.(3分)若二次根式有意义,则x的取值范围是.13.(3分)若用半径为10cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥底面圆的半径为cm.14.(3分)如图,已知一次函数y=kx+b(k≠0)的图象分别与x、y轴交于A、B两点,若OA=2,OB=1,则关于x的方程kx+b=0的解为.15.(3分)《九章算术》是中国古代的数学专著,是《算经十书》中最重要的一部,书中第八章内容“方程”里记载了一个有趣的追及问题,可理解为:速度快的人每分钟走100米,速度慢的人每分钟走60米,现在速度慢的人先走100米,速度快的人去追他.问速度快的人追上他需要分钟.16.(3分)物理课上学过小孔成像的原理,它是一种利用光的直线传播特性实现图象投影的方法.如图,燃烧的蜡烛(竖直放置)AB经小孔O在屏幕(竖直放置)上成像A′B′,设AB=36cm,A′B′=24cm,小孔O到AB的距离为30cm,则小孔O到A′B′的距离为cm.17.(3分)如图,在平面直角坐标系中,点A的坐标为(1,0),点B在反比例函数y=(x>0)的图象上,BC⊥x轴于点C,∠BAC=30°,将△ABC沿AB翻折,若点C的对应点D落在该反比例函数的图象上,则k的值为.18.(3分)如图,已知两条平行线l1、l2,点A是l1上的定点,AB⊥l2于点B,点C、D分别是l1,l2上的动点,且满足AC=BD,连接CD交线段AB于点E,BH⊥CD于点H,则当∠BAH最大时,sin∠BAH的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)19.(8分)(1)计算:|π﹣3|+2sin30°﹣(﹣2)0;(2)化简:÷(x﹣2).20.(8分)解不等式组,并求出它的所有整数解的和.21.(8分)2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:成绩统计表组别成绩x(分)百分比A组x<605%B组60≤x<7015%C组70≤x<80aD组80≤x<9035%E组90≤x≤10025%根据所给信息,解答下列问题:(1)本次调查的成绩统计表中a=%,并补全条形统计图;(2)这200名学生成绩的中位数会落在组(填A、B、C、D或E);(3)试估计该校1200名学生中成绩在90分以上(包括90分)的人数.22.(8分)2024年“五一”假期,扬州各旅游景区持续火热.小明和小亮准备到东关街、瘦西湖、运河三湾风景区、个园、何园(分别记作A、B、C、D、E)参加公益讲解活动.(1)若小明在这5个景区中随机选择1个景区,则选中东关街的概率是;(2)小明和小亮在C、D、E三个景区中,各自随机选择1个景区,请用画树状图或列表的方法,求小明和小亮选到相同景区的概率.23.(10分)为了提高垃圾处理效率,某垃圾处理厂购进A、B两种机器,A型机器比B型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B型机器每天处理多少吨垃圾?24.(10分)如图1,将两个宽度相等的矩形纸条叠放在一起,得到四边形ABCD.(1)试判断四边形ABCD的形状,并说明理由;(2)已知矩形纸条宽度为2cm,将矩形纸条旋转至如图2位置时,四边形ABCD的面积为8cm2,求此时直线AD、CD所夹锐角∠1的度数.25.(10分)如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于A(﹣2,0),B(1,0)两点.(1)求b、c的值;(2)若点P在该二次函数的图象上,且△PAB的面积为6,求点P的坐标.26.(10分)如图,已知∠PAQ及AP边上一点C.(1)用无刻度直尺和圆规在射线AQ上求作点O,使得∠COQ=2∠CAQ;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O为圆心,以OA为半径的圆交射线AQ于点B,用无刻度直尺和圆规在射线CP上求作点M,使点M到点C的距离与点M到射线AQ的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若sinA=,CM=12,求BM的长.27.(12分)如图,点A、B、M、E、F依次在直线l上,点A、B固定不动,且AB=2,分别以AB、EF为边在直线l同侧作正方形ABCD、正方形EFGH,∠PMN=90°,直角边MP恒过点C,直角边MN恒过点H.(1)如图1,若BE=10,EF=12,求点M与点B之间的距离;(2)如图1,若BE=10,当点M在点B、E之间运动时,求HE的最大值;(3)如图2,若BF=22,当点E在点B、F之间运动时,点M随之运动,连接CH,点O是CH的中点,连接HB、MO,则2OM+HB的最小值为.28.(12分)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知△ABC,CA=CB,⊙O是△ABC的外接圆,点D在⊙O上(AD>BD),连接AD、BD、CD.【特殊化感知】(1)如图1,若∠ACB=60°,点D在AO延长线上,则AD﹣BD与CD的数量关系为;【一般化探究】(2)如图2,若∠ACB=60°,点C、D在AB同侧,判断AD﹣BD与CD的数量关系并说明理由;【拓展性延伸】(3)若∠ACB=α,直接写出AD、BD、CD满足的数量关系.(用含α的式子表示)
2024年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.(3分)实数2的倒数是()A.﹣2 B.2 C.﹣ D.【分析】直接利用倒数的定义分析得出答案.【解答】解:实数2的倒数是:.故选:D.【点评】此题主要考查了倒数以及实数的性质,正确把握倒数的定义是解题关键.2.(3分)“致中和,天地位焉,万物育焉”,对称之美随处可见.下列选项分别是扬州大学、扬州中国大运河博物馆、扬州五亭桥、扬州志愿服务的标识,其中的轴对称图形是()A. B. C. D.【分析】根据轴对称图形的定义解答即可.【解答】解:由图可知,A、B、D不是轴对称图形;C是轴对称图形.故选:C.【点评】本题考查的是轴对称图形,熟知如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称是解题的关键.3.(3分)下列运算中正确的是()A.(a﹣b)2=a2﹣b2 B.5a﹣2a=3a C.(a3)2=a5 D.3a2•2a3=6a6【分析】根据单项式乘单项式、合并同类项法则、完全平方公式、幂的乘方法则,逐项计算,即可得出正确答案.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故A选项错误;B、5a﹣2a=3a,故B选项正确;C、(a3)2=a6,故C选项错误;D、3a2•2a3=6a5,故D选项错误;故选:B.【点评】本题考查了整式的混合运算,掌握整式的运算法则并正确计算是解题的关键.4.(3分)第8个全国近视防控宣传教育月的主题是“有效减少近视发生,共同守护光明未来”.某校积极响应,开展视力检查.某班45名同学视力检查数据如下表:视力4.34.44.54.64.74.84.95.0人数1447111053这45名同学视力检查数据的众数是()A.4.6 B.4.7 C.4.8 D.4.9【分析】根据众数的概念求解即可.【解答】解:根据列表可知视力4.7的人数最多为11人,即众数为4.7,故选:B.【点评】本题考查众数的概念,解题的关键是熟知相关概念,出现次数最多的数为众数.5.(3分)在平面直角坐标系中,点P(1,2)关于坐标原点的对称点P′的坐标为()A.(﹣1,﹣2) B.(﹣1,2) C.(1,﹣2) D.(1,2)【分析】根据关于原点对称的点的坐标特点解答即可.【解答】解:∵点P(1,2),∴关于坐标原点的对称点P′的坐标为(﹣1,﹣2).故选:A.【点评】本题考查的是关于原点对称的点的坐标特点,熟知两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y)是解题的关键.6.(3分)如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥 B.圆锥 C.三棱柱 D.长方体【分析】利用三棱柱的展开图的通知解答即可.【解答】解:由几何体的表面展开后得到的平面图形可知:侧面为三个相同的长方形,上下底面为全等的三角形,符合三棱柱的特征,所以该几何体是三棱柱.故选:C.【点评】本题主要考查了几何体的展开图,熟练掌握三棱柱的展开图的特征是解题的关键.7.(3分)在平面直角坐标系中,函数y=的图象与坐标轴的交点个数是()A.0 B.1 C.2 D.4【分析】分别令x、y为零,代入函数解析式分析判断即可.【解答】解:当x=0时,y=2,故函数与y轴的交点坐标为(0,2),当y=0时,函数无意义.故函数与x轴没有交点,∴函数y=的图象与坐标轴的交点个数是1个.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握图象上点的坐标特征是关键.8.(3分)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,…,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为()A.676 B.674 C.1348 D.1350【分析】将这一列数继续写下去,发现这列数的变化规律即可解答.【解答】解:这列数为:1,1,2,3,5,8,13,21,34,⋯,可以发现每3个数为一组,每一组前2个数为奇数,第3个数为偶数,∵2024÷3=674…2,即前2024个数共有674组,且余2个数,奇数有:674×2+2=1350(个),故选:D.【点评】本题考查的是规律型:数字的变化类,发现这列数的变化规律是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)近年来扬州经济稳步发展,2024年4月26日,扬州市统计局、国家统计局扬州调查队联合发布一季度全市实现地区生产总值约18700000万元,把18700000这个数用科学记数法表示为1.87×107.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:18700000=1.87×107,故答案为:1.87×107.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.10.(3分)分解因式2x2﹣4x+2=2(x﹣1)2.【分析】先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.11.(3分)数学兴趣小组做抛掷一枚瓶盖的实验后,整理的实验数据如下表:累计抛掷次数501002003005001000200030005000盖面朝上次数2854106157264527105615872650盖面朝上频率0.5600.5400.5300.5230.5280.5270.5280.5290.530根据以上实验数据可以估计出“盖面朝上”的概率约为0.53.(精确到0.01)【分析】根据表格中的数据可知,盖面朝上频率在0.53左右波动,据此可得出结论.【解答】解:由题意可知,盖面朝上频率在0.53左右波动,∴根据以上实验数据可以估计出“盖面朝上”的概率约为0.53.故答案为:0.53.【点评】本题考查的是利用频率估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解题的关键.12.(3分)若二次根式有意义,则x的取值范围是x≥2.【分析】根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.【点评】本题考查二次根式的意义,只需使被开方数大于或等于0即可.13.(3分)若用半径为10cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥底面圆的半径为5cm.【分析】根据圆的周长公式计算即可.【解答】解:由题意可知:圆锥的底面周长为10πcm,则圆锥底面圆的半径为=5(cm),故答案为:5.【点评】本题考查的是圆锥的计算,熟记圆锥的底面圆周长是扇形的弧长是解题的关键.14.(3分)如图,已知一次函数y=kx+b(k≠0)的图象分别与x、y轴交于A、B两点,若OA=2,OB=1,则关于x的方程kx+b=0的解为x=﹣2.【分析】利用函数图象,x=﹣2函数值为0,则于x的方程kx+b=0的解为x=﹣2.【解答】解:∵OA=2,∴一次函数y=kx+b(k≠0)的图象与x轴相交于点A(﹣2,0),∴关于x的方程kx+b=0的解为x=﹣2.故答案为:x=﹣2.【点评】本题考查了一次函数与一元一次方程,一次函数的性质,方程的解就是一次函数图象与x轴的交点的横坐标是解题的关键.15.(3分)《九章算术》是中国古代的数学专著,是《算经十书》中最重要的一部,书中第八章内容“方程”里记载了一个有趣的追及问题,可理解为:速度快的人每分钟走100米,速度慢的人每分钟走60米,现在速度慢的人先走100米,速度快的人去追他.问速度快的人追上他需要2.5分钟.【分析】根据题意,设速度快的人需要x分钟才能追上速度慢的人,可列:100+60x=100x,求解即可.【解答】解:设速度快的人需要x分钟才能追上速度慢的人,根据题意可列:100+60x=100x,解得:x=2.5,故答案为:2.5.【点评】本题考查的是一元一次方程的应用与数学常识,根据题意正确列出方程是解题的关键.16.(3分)物理课上学过小孔成像的原理,它是一种利用光的直线传播特性实现图象投影的方法.如图,燃烧的蜡烛(竖直放置)AB经小孔O在屏幕(竖直放置)上成像A′B′,设AB=36cm,A′B′=24cm,小孔O到AB的距离为30cm,则小孔O到A′B′的距离为20cm.【分析】利用已知得出:△ABO∽△A′B′O,进而利用相似三角形的性质求出即可.【解答】解:设小孔O到A′B′的距离为xcm,由题意可得:△ABO∽△A′B′O,则==,解得:x=20.故答案为:20.【点评】此题主要考查了相似三角形的应用,熟练掌握相似三角形的性质是解题关键.17.(3分)如图,在平面直角坐标系中,点A的坐标为(1,0),点B在反比例函数y=(x>0)的图象上,BC⊥x轴于点C,∠BAC=30°,将△ABC沿AB翻折,若点C的对应点D落在该反比例函数的图象上,则k的值为2.【分析】作DG⊥x轴,垂足为G,利用对称性质和解直角三角形解答即可得到结果.【解答】解:设点B坐标为(m,),则C(m,0),∵A(1,0),∴AC=m﹣1,由对称可知:AD=m﹣1,∠DAB=∠CAB=30°,∴∠DAC=60°,作DG⊥x轴,垂足为G,∴AG=,DG=,∴D(,),∵点D在反比例函数图象上,∴()•=k①,在Rt△ABC中,∵∠BAC=30°,∴BC=AC,即=(m﹣1)②,由①②解得k=2.故答案为:2.【点评】本题考查了反比例函数图象上点的坐标特征、坐标与图形变化、折叠问题,熟练掌握图象上点的坐标特征是关键.18.(3分)如图,已知两条平行线l1、l2,点A是l1上的定点,AB⊥l2于点B,点C、D分别是l1,l2上的动点,且满足AC=BD,连接CD交线段AB于点E,BH⊥CD于点H,则当∠BAH最大时,sin∠BAH的值为.【分析】由题易得四边形ACBD是平行四边形,从而得到BE是定长,又由∠BHE=90°,得出直角对直角的隐圆模型,再根据最大张角问题(相切时)求解即可.【解答】解:∵AC∥BD,∴四边形ACBD是平行四边形,∴AE=BE=AB,∵A为定点,且AB⊥l2,∴AE为定值,∵BH⊥CD,∴∠BHE=90°,∴点H在以BE为直径的圆上运动(如图,O为圆心),此时OE=BE=OA,∵当AH与⊙O相切时∠BAH最大,∴sin∠BAH==.故答案为:.【点评】本题主要考查了切线的性质,熟练掌握切线的性质、圆周角定理是解题的关键,其中识别出隐圆模型至关重要.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)19.(8分)(1)计算:|π﹣3|+2sin30°﹣(﹣2)0;(2)化简:÷(x﹣2).【分析】(1)先化简绝对值,三角函数,零指数幂,再按实数的运算法则进行计算;(2)按步骤依次化简分式.【解答】解:(1)|π﹣3|+2sin30°﹣(﹣2)0==π﹣3;(2)÷(x﹣2)==.【点评】本题主要考查了实数的运算,分式的化简,熟练掌握法则与性质是解题的关键.20.(8分)解不等式组,并求出它的所有整数解的和.【分析】先求出两个不等式的解集,再求其公共解,然后求出整数解的和即可.【解答】解:解不等式2x﹣6≤0,得:x≤3,解不等式x,得:x,则不等式组的解集为x≤3,所以整数解为1,2,3,整数解的和为6.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.(8分)2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:成绩统计表组别成绩x(分)百分比A组x<605%B组60≤x<7015%C组70≤x<80aD组80≤x<9035%E组90≤x≤10025%根据所给信息,解答下列问题:(1)本次调查的成绩统计表中a=20%,并补全条形统计图;(2)这200名学生成绩的中位数会落在D组(填A、B、C、D或E);(3)试估计该校1200名学生中成绩在90分以上(包括90分)的人数.【分析】(1)用200分别减去A,B,D,E组的人数,可得C组的人数,用C组的人数除以200再乘以100%可得a的值,最后补全条形统计图即可.(2)根据中位数的定义可得答案.(3)根据用样本估计总体,用1200乘以统计表中E组的百分比,即可得出答案.【解答】解:(1)由题意得,C组的人数为200﹣10﹣30﹣70﹣50=40(人),∴a=40÷200×100%=20%.故答案为:20.补全条形统计图如图所示.(2)将这200名学生成绩按照从小到大的顺序排列,排在第100和101名的学生成绩均在D组,∴这200名学生成绩的中位数会落在D组.故答案为:D.(3)1200×25%=300(人).∴估计该校1200名学生中成绩在90分以上(包括90分)的人数约300人.【点评】本题考查条形统计图、统计表、用样本估计总体、中位数,能够读懂统计图表,掌握用样本估计总体、中位数的定义是解答本题的关键.22.(8分)2024年“五一”假期,扬州各旅游景区持续火热.小明和小亮准备到东关街、瘦西湖、运河三湾风景区、个园、何园(分别记作A、B、C、D、E)参加公益讲解活动.(1)若小明在这5个景区中随机选择1个景区,则选中东关街的概率是;(2)小明和小亮在C、D、E三个景区中,各自随机选择1个景区,请用画树状图或列表的方法,求小明和小亮选到相同景区的概率.【分析】(1)由题意知,共有5种等可能的结果,其中选中东关街的结果有1种,利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及小明和小亮选到相同景区的结果数,再利用概率公式可得出答案.【解答】解:(1)由题意知,共有5种等可能的结果,其中选中东关街的结果有1种,∴选中东关街的概率是.故答案为:.(2)列表如下:CDEC(C,C)(C,D)(C,E)D(D,C)(D,D)(D,E)E(E,C)(E,D)(E,E)共有9种等可能的结果,其中小明和小亮选到相同景区的结果有3种,∴小明和小亮选到相同景区的概率为=.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.23.(10分)为了提高垃圾处理效率,某垃圾处理厂购进A、B两种机器,A型机器比B型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B型机器每天处理多少吨垃圾?【分析】设B型机器每天处理x吨垃圾,则A型机器每天处理(x+40)吨垃圾,利用工作时间=工作总量÷工作效率,结合A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等,可列出关于x的分式方程,解之经检验后,即可得出结论.【解答】解:设B型机器每天处理x吨垃圾,则A型机器每天处理(x+40)吨垃圾,根据题意得:=,解得:x=60,经检验,x=60是所列方程的解,且符合题意.答:B型机器每天处理60吨垃圾.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(10分)如图1,将两个宽度相等的矩形纸条叠放在一起,得到四边形ABCD.(1)试判断四边形ABCD的形状,并说明理由;(2)已知矩形纸条宽度为2cm,将矩形纸条旋转至如图2位置时,四边形ABCD的面积为8cm2,求此时直线AD、CD所夹锐角∠1的度数.【分析】(1)通过两组对边相互平行的四边形可得ABCD是平行四边形,再通过等宽即高相等和利用等面积证边相等即可;(2)利用面积公式把边长求出来,再根据锐角三角函数值或者含有30°的直角三角形的性质求解即可.【解答】(1)四边形ABCD是菱形,理由如下:如图作CH⊥AB,垂足为H,CG⊥AD,垂足为G,∵两个纸条为矩形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵S▱ABCD=AB•CH=AD•CG,且CH=CG,∴AB=AD,∴四边形ABCD是菱形.(2)如图,作AM⊥CD,垂足为M,∵S菱形ABCD=CD•AM=8cm2,且AM=2cm,∴CD=4cm,∴AD=CD=4cm,再Rt△ADM中,sin∠1==,∴∠1=30°.【点评】本题主要考查了菱形判定与性质,熟练掌握菱形的性质和判定和矩形的性质以及含有30°的直角三角形的性质是解题关键.25.(10分)如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于A(﹣2,0),B(1,0)两点.(1)求b、c的值;(2)若点P在该二次函数的图象上,且△PAB的面积为6,求点P的坐标.【分析】(1)把A(﹣2,0),B(1,0)代入y=﹣x2+bx+c,解方程组求出b,c的值;(2)由(1)得出抛物线解析式为y=﹣x2﹣x+2,设点P坐标为(m,﹣m2﹣m+2),根据三角形的面积列出关于m的方程,解方程即可.【解答】解:(1)把A(﹣2,0),B(1,0)代入y=﹣x2+bx+c得:,解得;(2)由(1)知,二次函数解析式为y=﹣x2﹣x+2,设点P坐标为(m,﹣m2﹣m+2),∵△PAB的面积为6,AB=1﹣(﹣2)=3,∴S△PAB=AB•|yP|=×3×|﹣m2﹣m+2|=6,∴|m2+m﹣2|=4,即m2+m﹣2=4或m2+m﹣2=﹣4,解得m=﹣3或m=2,∴P(﹣3,﹣4)或(2,﹣4).【点评】本题考查了抛物线与x轴的交点,二次函数的性质以及解一元二次方程,关键是求出抛物线解析式.26.(10分)如图,已知∠PAQ及AP边上一点C.(1)用无刻度直尺和圆规在射线AQ上求作点O,使得∠COQ=2∠CAQ;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O为圆心,以OA为半径的圆交射线AQ于点B,用无刻度直尺和圆规在射线CP上求作点M,使点M到点C的距离与点M到射线AQ的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若sinA=,CM=12,求BM的长.【分析】(1)作AC的垂直平分线交AQ于点O.(2)作AC的垂直平分线交AQ于点O,以点O为圆心,OC为半径画圆交AQ于点B,作∠CBQ的角平分线交AP于点M,点M即为所求;(3)可以假设BC=3k,AB=5k,则AC=4k,证明△MBC≌△MBH(AAS),推出BC=BH=3k,推出AH=AB+BH=8k,推出MH=6k,构建方程求解.【解答】解:(1)如图点O即为所求;(2)如图,点B点M即为所求;(3)由作图可知OA=OC=OB,∴∠ACB=90°,∵sinA==,∴可以假设BC=3k,AB=5k,则AC=4k,∵BM平分∠CBQ,MC⊥CB,MH⊥BQ,∴∠MBC=∠MBH,∠MCB=∠BHM=90°,∵BM=BM,∴△MBC≌△MBH(AAS),∴BC=BH=3k,∴AH=AB+BH=8k,∵sinA==,∴AM=10k,MH=MC=6k,∴12=6k,∴k=2,∴BH=6,MH=12,∴BM===6.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质,角平分线的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.27.(12分)如图,点A、B、M、E、F依次在直线l上,点A、B固定不动,且AB=2,分别以AB、EF为边在直线l同侧作正方形ABCD、正方形EFGH,∠PMN=90°,直角边MP恒过点C,直角边MN恒过点H.(1)如图1,若BE=10,EF=12,求点M与点B之间的距离;(2)如图1,若BE=10,当点M在点B、E之间运动时,求HE的最大值;(3)如图2,若BF=22,当点E在点B、F之间运动时,点M随之运动,连接CH,点O是CH的中点,连接HB、MO,则2OM+HB的最小值为2.【分析】(1)易证△MCB∽△HME,再代入边长求解即可;(2)由△MCB∽△HME得出相似比,设未知数代入,得到关于HE的二次函数表达式,进而求最值即可;(3)先证CH=2OM,将2OM+HB转化为CH+HB的最小值,利用“将军饮马“模型做对称点求解即可.【解答】解:(1)由题易得∠CBM=∠CMH=∠HEM=90°,∵∠CMB+∠BCM=∠CMB+∠HME=90°,∴∠BCM=∠HME,∴△MCB∽△HME,∴,∵BC=AB=2,EH=EF=12,BE=10,∴,解得BM=4或6,∴点M与点B之间的距离是4或6.(2)由(1)知,设EH=y,BM=x,∵BE=10,∴EM=10﹣x,∴,∴y=﹣x2+5=﹣(x﹣5)+12.5,∵﹣<0,∴当x=5时,ymax=12.5,即HE最大值为12.5.(3)∵∠CMH=90°,O是CH中点,∴CH=2OM,∴2OM+HB=CH+BH,∴求2OM+HB的最小值就是求CH+BH的最小值即可.如图,连接FH,则点H在∠EFG的角平分线上,作B关于FH的对称点B',连接B'C交FH为H',则H'即为所求H位置,B'C长度即为CH+HB最小值.过点C作CQ⊥B'F.∵∠BFH=∠B'FH=45°,∴B'在FG的延长线上,∵∠CBF=∠BFQ=∠FQC=90°,∴四边形CBFQ为矩形,∴FQ=BC=2,∵BF=B'F=22,∴B'Q=B'F﹣QF=20,在Rt△B'CQ中,B'C2==2,即CH+BH最小值为2,∴2OM+HB最小值为2.【点评】本题主要考查了四边形综合题,熟练掌握相似的判定和性质、二次函数求最值、轴对称等知识点是解题关键.28.(12分)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知△ABC,CA=CB,⊙O是△ABC的外接圆,点D在⊙O上(AD>BD),连接AD、BD、CD.【特殊化感知】(1)如图1,若∠ACB=60°,点D在AO延长线上,则AD﹣BD与CD的数量关系为AD﹣BD=CD;【一般化探究】(2)如图2,若∠ACB=60°,点C、D在AB同侧,判断AD﹣BD与CD的数量关系并说明理由;【拓展性延伸】(3)若∠ACB=α,直接写出AD、BD、CD满足的数量关系.(用含α的式子表示)【分析】(1)利用等边三角形的判定与性质和含30°角的直角三角形的性质解答即可;(2)延长BD至点E使DE=CD,连接CE,利用等边三角形的判定与性质,圆的内接四边形的性质,圆周角定理和全等三角形的判定与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外文模板印刷用产业链招商引资的调研报告
- 商业管理计划行业市场调研分析报告
- 皮制公文包细分市场深度研究报告
- 工具采购合同
- 在啤酒作坊内供应饮料行业相关项目经营管理报告
- 医用沉淀泥产品供应链分析
- 厚夹克产业链招商引资的调研报告
- 5G广播服务行业经营分析报告
- 举办竞走比赛行业经营分析报告
- 化妆品研究行业相关项目经营管理报告
- 危险化学品安全使用许可适用行业目录(2013年版)3
- 湿法脱硫工艺计算书
- 轿车子午线轮胎用帘线品种及其性能
- (医学PPT课件)NT检查规范
- 天然气室外立管吊装专项施工方案(完整版)
- 浅谈博物馆布展设计的内容与形式
- 在音乐教学中培养学生的人文素养
- 4各部门定期识别适用的安全法律法规、标准规范和其他要求清单
- 最新和君创业《管理咨询技艺》页(实用)
- U型管卡标准[图表卡片]
- 全国抗震设防烈度表
评论
0/150
提交评论