




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TheNumberofApplicationsofTheDeterminants专业:数学与应用数学作者:指导老师:学校时间摘要行列式是数学研究中的一类重要的工具之一,它的应用非常广泛.本文从以下三个方面对行列式的应用进行了论述:探讨了行列式与线性方程组的关系以与在解线性方程组中的应用;举例说明了行列式在初等代数中的应用,如在因式分解中应用,证明不等式以与恒等式;最后综述了行列式在解析几何中的若干应用.关键词:行列式;矩阵;线性方程组;秩;因式分解;平面组;点组AbstractDeterminantisakindofimportanttoolsinthemathematicalstudy,itisaverywiderangeofapplications.Inthispaper,wehavebeentodiscussfromthefollowingthreeaspectsoftheapplicationsofthedeterminants:Toexploretherelationshipbetweenthedeterminantandlinearequationsandtheapplicationinthesolutionoflinearequations;examplesoftheapplicationofthedeterminantinalgebra,suchastheapplicationoffactorization,toprovethatinequalityandidentity;inthefinal,wehavemadeoverviewofthenumberofapplicationsofthedeterminantsinanalyticgeometry.Keywords:Determinant;Matrix;Linearequations;Rank;Factorization;Planegroup;Pointgroup目录摘要 IAbstract II0引言 11行列式在线性方程组中的一个应用 12行列式在初等代数中的几个应用 22.1用行列式分解因式 22.2用行列式证明不等式和恒等式 33行列式在解析几何中的几个应用 43.1用行列式表示公式 43.2行列式在平面几何中的一些应用 63.3行列式在三维空间中的应用 8参考文献 150引言行列式是研究数学的重要工具之一.例如线性方程组(见文[1]-[5])、多元一次方程组的解、三维空间中多个平面组或多个点组的相关位置(见文[2])、初等代数(见文[9])、解析几何(见文[6]-[8])、维空间的投影变换、线性微分方程组等,用行列式来计算是很便利的.本文进一步研究探讨了行列式在线性方程组、初等代数、解析几何三个方面的应用.1行列式在线性方程组中的一个应用设含有个变元的个一次线性方程组为(1)设方程组(1)的系数矩阵的秩是,不失一般性,假定不等于零的阶行列式是行列式中的元素,就是矩阵中去掉第一列的元素以后剩下的元素,并按照它们的原有位置排列.我们把看作是未知数,是已知数,解方程组(1),得(2)式中是行列式的第列元素换以所成的行列式.也就是把中第列移到第一列,得上式右边的行列式用表示,行列式是矩阵中去掉第列剩余下的元素所组成.故代入(2)式,得,或.结论[2]:方程组(1)中的与成比例,式中是从矩阵中去掉第列剩余下的元素做成的行列式.2行列式在初等代数中的几个应用2.1用行列式分解因式利用行列式分解因式的关键,是把所给的多项式写成行列式的形式,并注意行列式的排列规则.下面列举几个例子来说明.例2.1.1分解因式:.解例2.1.2分解因式:.解原式2.2用行列式证明不等式和恒等式我们知道,把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上,行列式不变;如果行列式中有一行(列)的元素全部是零,那么这个行列式等于零.利用行列式的这些性质,我们可以构造行列式来证明等式和不等式.例2.2.1已知,求证.证明令,则命题得证.例2.2.2已知求证.证明令,则命题得证.例2.2.3已知,求证.证明令,则而,则,命题得证.3行列式在解析几何中的几个应用3.1用行列式表示公式3.1.1用行列式表示三角形面积以平面内三点为顶点的的面积S是(3)的绝对值.证明将平面三点扩充到三维空间,其坐标分别为,其中为任意常数.由此可得:则面积为3.1.2用行列式表示直线方程直线方程通过两点和的直线的方程为.(4)证明由两点式,我们得直线的方程为将上式展开并化简,得此式可进一步变形为此式为行列式(4)按第三行展开所得结果.原式得证.3.1.3例若直线过平面上两个不同的已知点,,求直线方程.解设直线的方程为,不全为0,因为点在直线上,则必须满足上述方程,从而有这是一个以为未知量的齐次线性方程组,且不全为0,说明该齐次线性方程组有非零解.其系数行列式等于0,即则所求直线的方程为同理,若空间上有三个不同的已知点,平面过,则平面的方程为同理,若平面有三个不同的已知点,圆过,则圆的方程为3.2行列式在平面几何中的一些应用3.2.1三线共点平面内三条互不平行的直线相交于一点的充要条件是.3.2.2三点共线平面内三点在一直线的充要条件是.3.2.3应用举例例平面上给出三条不重合的直线:,若,则这三条直线不能组成三角形.证明设与的交点为,因为将第1列乘上,第2列乘上,全加到第3列上去,可得:因为在与上,所以,且若与平行,若也在上交于一点,无论何种情形,都有不组成三角形.这说明由,得到三条直线或两两平行或三线交于一点.也就是三条直线不能组成三角形.3.3行列式在三维空间中的应用3.3.1平面组设由个平面方程构成的方程组为(5)若方程组(5)中的各代以,并用乘以(5)式两端:得(6)叫做点的齐次坐标.这平面组的相关位置与方程组的系数所组成的两矩阵与的秩与有关系.现在分别叙述如下:(Ⅰ)当,则方程组中各系数全是0.(Ⅱ)当则方程组(5)不合理,方程组(6)有解.当,,,将趋近于无穷大(假设趋近于0).在这种情况下,我们说这个平面在无穷远重合.(Ⅲ)当,则在矩阵与中所有二阶行列式全是0.所以我们有以上等式表示个平面相合成一个平面.(Ⅳ)当方程的系数中至少有两组数如与满足以下关系式上式表示平面平行但不相合.也就是平面组中个平面相合或平行,至少有两个平面不相合.(Ⅴ)则矩阵与中所有三阶行列式全是0,至少有一个二阶行列式不是0.假设我们必可求得适合下式:式中,否则行列式将等于0.所以以上等式表示平面经过直线就是个平面全经过一条直线.(Ⅵ)当并假定方程组的系数至少有一组适合以下关系:(是中的一数)以上第一个等式表示组中第平面与直线平行.又因第二个不等式表示第平面不经过上述直线,所以个平面有平行的交线.例如由方程组解得因为行列式而其它三个行列式不全是零故,就是三个平面的交点在无穷远.三个平面中每两个平面的交线是平行的.(Ⅶ)当,并假定在这种情况下,平面相交于一点.又因故平面经过前面三个平面的交点,就是个平面有一个交点,不在无穷远.(Ⅷ)当,则矩阵中至少有一个四阶行列式不等于零.假设.(是中的一数)以上不等式表示平面不经过前三个平面的交点.3.3.2点组设有个点,它们的齐次坐标各是此点组的相关位置与坐标做成的矩阵的秩有关系.分别叙述如下:(Ⅰ)当,则个点的坐标全是(0,0,0,0)不能确定点的位置.(Ⅱ)当,假定,很容易推得(因为中所有的二阶行列式等于0)上式表示个点全重合.(Ⅲ)当,并假设因中所有三阶行列式全等于0,我们可以求得适合以下方程:式中不等于0,否则行列式将等于0.故可求得假设点与的连线为把的等值代入上式,易验证点在这连线上,故该点与第一与第二两点共在一直线上.因可以是,所以个点全在一直线上.(Ⅳ)当,并假定中所有的四阶行列式全是0,我们可以求得适合下式:式中不等于0,否则行列式从以上方程组求得:设点与所确定的平面是把的等值代入上式,甚易验明点在这个平面上,故该点与前三个点共在一平面上.又因为可以是,所以个点共在一个平面上.(Ⅴ)当,中至少有一个四阶行列式如是中任一个数.以上不等式表示点不在前三个点所确定的平面上,因为假设点在平面上,则以下关系成立.也就是行列式这与假设矛盾.致谢本文是在的指导和帮助下完成的,在此对周老师表示衷心的感谢!参考文献[1]北京大学数学系几何与代数教研室代数小组.高等代数(第三版)[M].北京:高等教育出社,2003.[2]高杨芝.行列式浅说[M].江苏:江苏人民出版社,1958.[3]王萼芳,石生明修订.高等代数(第三版)[M].北京:高等教育出版社,2003.[4]王品超.高等代数新方法(下)[M].徐州:中国矿业大学出版社,2003.[
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年绿化喷洒车项目规划申请报告
- 周末小事记周记类型作文(11篇)
- 2025年水电行业投资热点项目与大型水电项目投资前景分析报告
- 汽车行业供应链韧性提升与风险防控策略研究报告2025
- 分析旅游行业在服务提升方面的创新点和难点
- 2025年金属焊接材料项目规划申请报告
- 电子竞技俱乐部电竞衍生品开发与品牌增值研究报告2025
- 假期旅游同意函与工作证明相结合(7篇)
- 2025年金属粉末:铜粉系列项目立项申请报告模板
- 我眼中的家乡小学生写景作文13篇
- 2025年新高考1卷(新课标Ⅰ)数学试卷
- 河南信息产业投资有限公司招聘考试真题2024
- 离婚协议书正规打印电子版(2025年版)
- 石家庄市国企招聘考试真题题库2024版
- 路面修复施工方案及路面石材下沉修复施工方案
- 外国文学名著导读
- 脑卒中患者血压管理
- 如何制作OruxMaps离线地图
- 校企汽修专业战略合作协议书
- 《红楼梦》四大家族主要人物关系图
- 地暖工程监理细则
评论
0/150
提交评论