版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章特殊的平行四边形1.1菱形的判定和面积第2课时一、教学目标1.经历菱形判定定理的探索过程,进一步发展合情推理能力。2.能够用综合法证明菱形的判定定理,进一步发展演绎推理能力。3.体会探索与证明过程中所蕴含的抽象、推理等数学思想。二、教学重点及难点重点:探索证明菱形的两个判定方法,掌握证明的基本要求、方法及思路.难点:明确推理证明的条件和结论能否用数学语言正确表达.三、教学用具多媒体课件、直尺或三角板。四、相关资《菱形的性质》动画,《菱形的判定》微课五、教学过程【复习引入】上一节课,我们学习了菱形的概念和菱形的性质,你能说出菱形的概念和菱形的性质定理吗?师生活动:教师出示问题,学生回顾上一节课所学内容.答:菱形的概念:有一组邻边相等的平行四边形叫做菱形.菱形的性质定理:菱形的四条边相等.菱形的两条对角线互相垂直.设计意图:通过复习,可以加深对菱形的概念和菱形性质的理解,也是探究菱形判定方法的基础.【探究新知】根据菱形的定义,有一组邻边相等的平行四边形是菱形.除此之外,你认为还有什么条件可以判断一个平行四边形是菱形?师生活动:教师出示问题,学生思考、讨论,教师引导.教师引导:我们学习平行四边形的判定时,是如何猜想并进行证明的呢?学生回答:……教师引导:与研究平行四边形的判定方法类似,我们研究菱形的性质定理的逆命题,看看它们是否成立.我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?师生活动:教师出示问题,学生猜想.学生猜想:对角线互相垂直的平行四边形是菱形.教师追问:如何证明你的猜想呢?师生活动:教师追问,引导学生写出已知、求证并完成证明过程.已知:如图,在□ABCD中,对角线AC与BD交于点O,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA=BC.∴四边形ABCD是菱形(菱形的定义).思考我们知道,菱形的四条边都相等.反过来,四条边相等的四边形是菱形吗?师生活动:教师出示问题,学生猜想.学生猜想:四条边相等的四边形是菱形.教师追问:如何证明你的猜想呢?师生活动:教师追问,引导学生写出已知、求证并完成证明过程.答:已知:如图,在四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形.证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.又∵AB=BC,∴四边形ABCD是菱形(菱形的定义).设计意图:通过此环节让学生对菱形的性质和判定的关系有了一定的认识.总结菱形的判定方法:(1)定义:有一组邻边相等的平行四边形叫做菱形.(2)判定定理1:对角线互相垂直的平行四边形是菱形.几何语言:∵□ABCD,AC⊥BD(已知),∴□ABCD是菱形(对角线互相垂直的平行四边形是菱形).判定定理2:四条边相等的四边形是菱形.几何语言:∵AB=BC=CD=DA(已知),∴四边形ABCD是菱形(四条边相等的四边形是菱形).设计意图:通过类比平行四边形判定定理的探究过程,从菱形性质定理的逆命题出发,提出猜想,发现结论,并从定义出发证明结论,得到菱形的判定方法.议一议如图,分别以A,C为圆心,以大于的长为半径作弧,两条弧分别相交于点B,D,依次连接A,B,C,D,四边形ABCD就是菱形.你认为这种做法正确吗?为什么?师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答.答:这种做法正确;因为分别以A,C为圆心,以大于的长为半径作弧,两条弧分别相交于点B,D,依次连接A,B,C,D,则AB=BC=CD=DA.所以四边形ABCD是菱形(四边相等的四边形是菱形).做一做:先将一张长方形的纸对折、再对折,然后沿虚线剪下,将纸展开,就得到了一个菱形。你能说说小颖这样做的道理吗?师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答.答:小颖的方法是利用轴对称制作了一个四边相等的四边形,因此一定是菱形.设计意图:巩固学生对菱形判定定理的理解.【典例精析】例已知:如图,在□ABCD中,对角线AC与BD相交于点O,AB=,OA=2,OB=1.求证:□ABCD是菱形.师生活动:教师分析、引导学生完成解题过程.分析:要证□ABCD是菱形,可以选择的判定方法有三种:方法1:一组邻边相等的平行四边形是菱形(定义);方法2:对角线互相垂直的平行四边形是菱形(判定定理1);方法3:四条边相等的四边形是菱形(判定定理2).小组合作交流:你用的是哪一种方法?你认为哪一种方法最好?证明:在△AOB中,∵AB=,OA=2,OB=1,∴AB2=AO2+OB2.∴△AOB是直角三角形,∠AOB是直角.∴AC⊥BD.∴□ABCD是菱形(对角线互相垂直的平行四边形是菱形).设计意图:初步应用对角线互相垂直的平行四边形是菱形进行推理证明.【课堂练习】1.下列命题中正确的是().A.一组邻边相等的四边形是菱形B.三条边相等的四边形是菱形C.四条边相等的四边形是菱形D.四个角相等的四边形是菱形参考答案C2.下列条件中,不能判定四边形ABCD为菱形的是().A.AC⊥BD,AC与BD互相平分B.AB=BC=CD=DAC.AB=BC,AD=CD,且AC⊥BDD.AB=CD,AD=BC,AC⊥BD参考答案C3.边长为5cm的平行四边形的两条对角线的长分别为6cm和8cm,则这个平行四边形为__________形,其面积为___________.参考答案菱;24cm24.如图,AD是△ABC的角平分线,EF垂直平分AD,分别交AB于点E,交AC于点F,则四边形AEDF是菱形吗?请说明理由.参考答案解:四边形AEDF是菱形;理由如下:∵EF垂直平分AD,∴△AOF与△DOF关于直线EF成轴对称.∴∠ODF=∠OAF.又∵AD平分∠BAC,即∠OAF=∠OAE,∴∠ODF=∠OAE.∴AE∥DF.同理可得DE∥AF.∴四边形AEDF是平行四边形,∴EO=OF.又∵□AEDF的对角线AD,EF互相垂直平分,∴□AEDF是菱形.5.已知:如图,在□ABCD中,对角线AC的垂直平分线分别与AD,AC,BC相交于点E,O,F.求证:四边形AECF是菱形.师生活动:老师先找几名学生板演,然后分析出现的问题,最后师生共同写出规范的解题过程.证明:在□ABCD中,∵AD∥BC,∴∠EAO=∠FCO(两直线平行,内错角相等).∵EF是AC的垂直平分线,∴AO=CO.在△AOE和△COF中,∵∴△AOE≌△COF(ASA).∴AE=CF.∵AE∥CF,∴四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形).∵EF⊥AC,∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).设计意图:学生通过本环节的学习,进一步理解了菱形的判定定理,对前面所学知识进行了更加深入地认识,同时提高了学生的逻辑推理能力,培养了学生的主动探索能力,激发了学生的学习兴趣.六、课堂小结本节课我们主要学习了菱形的判定方法和菱形面积的一种特殊计算方法,下面我们一起回顾一下.1.菱形的判定方法:(1)定义:有一组邻边相等的平行四边形叫做菱形.(2)判定定理1:对角线互相垂直的平行四边形是菱形.(3)判定定理2:四条边相等的四边形是菱形.师生活动:教师引导学生归纳、总
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年互联网+农业项目促销合作协议4篇
- 2025年度亚洲地区学生海外留学资助协议4篇
- 2025年LED照明灯具绿色供应链管理合作协议3篇
- 2025年度生态保护区抽水工程承包合同4篇
- 2025年度新能源汽车研发创业团队合作协议4篇
- 2025年度新型大理石石材买卖合同实施细则4篇
- 《个人所得税政策解读与应用课件》
- 中国棉腈围巾项目投资可行性研究报告
- 2025年度个人租赁合同示范文本4篇
- 2025年西安二手房交易全程资金监管服务合同3篇
- 2024年公司保密工作制度(四篇)
- 重庆市康德卷2025届高一数学第一学期期末联考试题含解析
- 建筑结构课程设计成果
- 双梁桥式起重机小车改造方案
- 基于AR的无人机操作训练系统
- XX农贸市场物业公司管理方案
- 纤维增强复合材料 单向增强材料Ⅰ型-Ⅱ 型混合层间断裂韧性的测定 编制说明
- 湖北省襄阳市数学中考2024年测试试题及解答
- YYT 0308-2015 医用透明质酸钠凝胶
- GB/T 44189-2024政务服务便民热线运行指南
- YYT 0698.1-2011 最终灭菌医疗器械包装材料 第1部分 吸塑包装共挤塑料膜 要求和试验方法
评论
0/150
提交评论