




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市康德卷2025届高一数学第一学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是()A.98 B.99C.99.5 D.1002.如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它对应的方程为(其中记为不超过的最大整数),且过点,若葫芦曲线上一点到轴的距离为,则点到轴的距离为()A. B.C. D.3.设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则;④若,,则.其中正确命题的序号是A.① B.②和③C.③和④ D.①和④4.已知函数,则等于A.2 B.4C.1 D.5.若,则的值是()A. B.C. D.16.已知是第三象限角,且,则()A. B.C. D.7.已知函数的定义域为,集合,若中的最小元素为2,则实数的取值范围是:A. B.C. D.8.函数的值域是A. B.C. D.9.幂函数y=xa,当a取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xa,y=xb的图象三等分,即有BM=MN=NA,那么=()A.0 B.1C. D.210.函数的零点所在区间为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数据的第50百分位数是__________.12.已知函数,若有解,则m的取值范围是______13.已知函数在上单调递减,则实数的取值范围是______14.如果在实数运算中定义新运算“”:当时,;当时,.那么函数的零点个数为______15.已知幂函数的图象过点,则________16.已知,,,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(其中)的图象过点,且其相邻两条对称轴之间的距离为,(1)求实数的值及的单调递增区间;(2)若,求的值域18.已知全集U={1,2,3,4,5,6,7,8},A={x|x2-3x+2=0},B={x|1≤x≤5,x∈Z},C={x|2<x<9,x∈Z}.求(1)A∪(B∩C);(2)(∁UB)∪(∁UC)19.有两直线和,当a在区间内变化时,求直线与两坐标轴围成的四边形面积的最小值20.已知函数(1)若函数在区间上有且仅有1个零点,求a的取值范围:(2)若函数在区间上的最大值为,求a的值21.已知直线过点,并与直线和分别交于点,若线段被点平分,求:(1)直线的方程;(2)以坐标原点为圆心且被截得的弦长为的圆的方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据分位数的定义即可求得答案.【详解】这组数据的60%分位数是.2、C【解析】先根据点在曲线上求出,然后根据即可求得的值【详解】点在曲线上,可得:化简可得:可得:()解得:()若葫芦曲线上一点到轴的距离为,则等价于则有:可得:故选:C3、A【解析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【详解】①选项成立,结合直线与平面垂直的性质,即可;②选项,m可能属于,故错误;③选项,m,n可能异面,故错误;④选项,该两平面可能相交,故错误,故选A.【点睛】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.4、A【解析】由题设有,所以,选A5、D【解析】由求出a、b,表示出,进而求出的值.详解】由,.故选:D6、A【解析】由是第三象限角可判断,利用平方关系即可求解.【详解】解:因为是第三象限角,且,所以,故选:A.7、C【解析】本题首先可以求出集合以及集合中所包含的元素,然后通过交集的相关性质以及中的最小元素为2即可列出不等式组,最后求出实数的取值范围【详解】函数,,或者,所以集合,,,,所以集合,因为中的最小元素为2,所以,解得,故选C【点睛】本题考查了集合的相关性质,主要考查了交集的相关性质、函数的定义域、带绝对值的不等式的求法,考查了推理能力与计算能力,考查了化归与转化思想,提升了学生的逻辑思维,是中档题8、A【解析】由,知,解得令,则.,即为和两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时最小,当直线过点A(4,0)时,最大.当直线和半圆相切时,,解得,由图可知.当直线过点A(4,0)时,,解得.所以,即.故选A.9、A【解析】由题意得,代入函数解析式,进而利用指对互化即可得解.【详解】BM=MN=NA,点A(1,0),B(0,1),所以,将两点坐标分别代入y=xa,y=xb,得所以,所以.故选:A.【点睛】本题主要考查了幂函数的图像及对数的运算,涉及换底公式,属于基础题.10、B【解析】由零点存在定理判定可得答案.【详解】因为在上单调递减,且,,所以的零点所在区间为故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】第50百分位数为数据的中位数,即得.【详解】数据的第50百分位数,即为数据的中位数为.故答案为:16.12、【解析】利用函数的值域,转化方程的实数解,列出不等式求解即可.【详解】函数,若有解,就是关于的方程在上有解;可得:或,解得:或可得.故答案为.【点睛】本题考查函数与方程的应用,考查转化思想有解计算能力.13、【解析】根据指数函数与二次函数的单调性,以及复合函数的单调性的判定方法,求得在上单调递增,在区间上单调递减,再结合题意,即可求解.【详解】令,可得抛物线的开口向上,且对称轴为,所以函数在上单调递减,在区间上单调递增,又由函数,根据复合函数的单调性的判定方法,可得函数在上单调递增,在区间上单调递减,因为函数在上单调递减,则,可得实数的取值范围是.故答案:.14、【解析】化简函数的解析式,解方程,即可得解.【详解】当时,即当时,由,可得;当时,即当时,由,可得(舍).综上所述,函数的零点个数为.故答案为:.15、3【解析】先求得幂函数的解析式,再去求函数值即可.【详解】设幂函数,则,则,则,则故答案为:316、【解析】利用两角和的正弦公式即可得结果.【详解】因为,,所以,由,,可得,,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m=1;单调增区间;(2)[0,3]【解析】解:(1)由题意可知,,,所以所以,解得:,所以的单调递增区间为;(2)因为所以所以,所以,所以的值域为考点:正弦函数的单调性,函数的值域点评:解本题的关键是由函数图象上的点和函数的周期确定函数的解析式,利用正弦函数的单调区间求出函数的单调增区间,利用角的范围求出函数的值域18、(1)A∪(B∩C)={1,2,3,4,5}.(2)(∁UB)∪(∁UC)={1,2,6,7,8}【解析】(1)先求集合A,B,C;再求B∩C,最后求A∪(B∩C)(2)先求∁UB,∁UC;再求(∁UB)∪(∁UC)试题解析:解:(1)依题意有:A={1,2},B={1,2,3,4,5},C={3,4,5,6,7,8},∴B∩C={3,4,5},故有A∪(B∩C)={1,2}∪{3,4,5}={1,2,3,4,5}(2)由∁UB={6,7,8},∁UC={1,2};故有(∁UB)∪(∁UC)={6,7,8}∪{1,2}={1,2,6,7,8}19、.【解析】利用直线方程,求出相关点的坐标,利用直线系解得yE=2.根据S四边形OCEA=S△BCE﹣S△OAB即可得出【详解】∵0<a<2,可得l1:ax﹣2y=2a﹣4,与坐标轴的交点A(0,﹣a+2),B(2,0)l2:2x﹣(1﹣a2)y﹣2﹣2a2=0,与坐标轴的交点C(a2+1,0),D(0,)两直线ax﹣2y﹣2a+4=0和2x﹣(1﹣a2)y﹣2﹣2a2=0,都经过定点(2,2),即yE=2∴S四边形OCEA=S△BCE﹣S△OAB|BC|•yE|OA|•|OB|(a21)×2(2﹣a)×(2)=a2﹣a+3=(a)2,当a时取等号∴l1,l2与坐标轴围成的四边形面积的最小值为【点睛】本题考查了相交直线、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题20、(1)(2)【解析】(1)结合函数图象,分四种情况进行讨论,求出a的取值范围;(2)对对称轴分类讨论,表达出不同范围下的最大值,列出方程,求出a的值.【小问1详解】①,解得:,此时,零点为,0,不合题意;②,解得:,此时,的零点为,1,不合题意;③,解得:,当时,的零点为,不合题意;当时,的零点为,不合题意;④,解得:,综上:a的取值范围是【小问2详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保基金会资金托管与绿色项目监管合同
- 海外企业员工招聘与派遣外包合同
- 绿色智慧园区BIMCIM技术集成实施合同
- 签合同授权协议书
- 生态修复工程环保合规性承诺协议
- 装配式农房抗震施工与抗震加固合同
- 执行款支付协议书
- 社区居民签协议书
- 联通套餐送宽带协议书
- 股权激励与员工绩效考核对接合同
- 《数据资产会计》 课件 第五章 数据资产的价值评估
- 合同到期不续签的模板
- 北京市2018年中考历史真题试卷(含答案)
- (完整版)新概念英语第一册单词表(打印版)
- 露天煤矿智能集控员职业技能竞赛理论考试题库(含答案)
- 市政府综合服务楼食堂及综合服务托管投标方案(技术方案)【附图】
- 北京市《配电室安全管理规范》(DB11T 527-2021)地方标准
- 工程物品采购清单-含公式
- 湖北武汉历年中考语文现代文阅读真题45篇(含答案)(2003-2023)
- 带货主播规章制度范本
- 数据真实性保证书
评论
0/150
提交评论