抛物线的简单几何性质(第二课时)_第1页
抛物线的简单几何性质(第二课时)_第2页
抛物线的简单几何性质(第二课时)_第3页
抛物线的简单几何性质(第二课时)_第4页
抛物线的简单几何性质(第二课时)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3.2抛物线的简单几何性质(2)方程图形范围对称性顶点焦半径焦点弦的长度

y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)lFyxOlFyxOlFyxOx≥0y∈Rx≤0y∈Rx∈Ry≥0y≤0x∈RlFyxO关于x轴对称

关于x轴对称

关于y轴对称

关于y轴对称(0,0)(0,0)(0,0)(0,0)一、直线与抛物线位置关系种类xyO1、相离;2、相切;3、相交(一个交点,两个交点)与双曲线的情况一样xyO二、判断方法探讨1、直线与抛物线相离,无交点。例:判断直线y=x+2与抛物线y2=4x的位置关系计算结果:得到一元二次方程,需计算判别式。相离。xyO2、直线与抛物线相切,交与一点。例:判断直线y=x+1与抛物线y2=4x的位置关系计算结果:得到一元二次方程,需计算判别式。相切。二、判断方法探讨xyO3、直线与抛物线的对称轴平行,相交与一点。例:判断直线y=6与抛物线y2=4x的位置关系计算结果:得到一元一次方程,容易解出交点坐标二、判断方法探讨xyO例:判断直线y=x-1与抛物线y2=4x的位置关系计算结果:得到一元二次方程,需计算判别式。相交。4、直线与抛物线的对称轴不平行,相交与两点。二、判断方法探讨判断直线与抛物线位置关系的操作程序(一):把直线方程代入抛物线方程得到一元一次方程得到一元二次方程直线与抛物线的对称轴平行相交(一个交点)计算判别式>0=0<0相交相切相离总结:判断直线是否与抛物线的对称轴平行不平行直线与抛物线相交(一个交点)平行判断直线与抛物线位置关系的操作程序(二)计算判别式>0=0<0相交相切相离数形结合⑴只有一个公共点⑵有两个公共点⑶没有公共点.F2、在抛物线y2=64x上求一点,使它到直线L:4x+3y+46=0的距离最短,并求此距离.例3、已知过抛物线

的焦点F的直线交抛物线于两点。(1)是否为定值?呢?(2)是否为定值?xOyFAB这一结论非常奇妙,变中有不变,动中有不动.三.抛物线的最值与定值问题丛书62页12题这一结论非常奇妙,变中有不变,动中有不动.A(x1,y1)(1)|AB|=x1+x2+p

(2)x1x2=,y1y2=-p2XyFOB(x2,y2)MA1B1M1y2=2px(p>0)(5)证明:以AB为直径的圆与准线相切总结:焦点弦问题例4、已知抛物线C:y2=4x,设直线与抛物线两交点为A、B,且线段AB中点为M(2,1),求直线l的方程.说明:中点弦问题的解决方法:①联立直线方程与曲线方程求解②点差法中点弦问题:例5、已知抛物线y2=2x,过Q(2,1)作直线与抛物线交于A、B,求AB中点的轨迹方程..F解:.F练习:

已知抛物线y=x2,动弦AB的长为2,求AB中点纵坐标的最小值。FABM解法1:xoy利用弦长公式解题题型二:抛物线的最值问题练习已知抛物线y=x2,动弦AB的长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论