2025年高考数学一轮复习-抽样方法、统计图表、用样本估计总体-专项训练【含答案】_第1页
2025年高考数学一轮复习-抽样方法、统计图表、用样本估计总体-专项训练【含答案】_第2页
2025年高考数学一轮复习-抽样方法、统计图表、用样本估计总体-专项训练【含答案】_第3页
2025年高考数学一轮复习-抽样方法、统计图表、用样本估计总体-专项训练【含答案】_第4页
2025年高考数学一轮复习-抽样方法、统计图表、用样本估计总体-专项训练【含答案】_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年高考数学一轮复习-抽样方法、统计图表、用样本估计总体-专项训练基础巩固练1.(2023连云港期中)下列一组数据的第30百分位数是()2.1,3.0,3.2,3.8,3.4,4.0,4.2,4.4,5.3,5.6.A.3.0 B.3.2C.3.3 D.4.42.从某中学抽取10名同学,得到他们的数学成绩(单位:分)如下:88,85,82,92,90,92,96,92,96,98.这10名同学数学成绩的众数、中位数分别为()A.92,92 B.92,96C.96,92 D.92,903.(2023宿迁月考)统计某样本数据得到的频率分布直方图如图所示,已知该样本容量为300,则样本数据落在[6,14)内的频数为()A.68 B.170C.204 D.2404.如图,这是某市2023年国庆节假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断,则下列判断正确的为()A.日成交量的中位数是16B.日成交量超过日平均成交量的有2天C.10月7日认购量的增幅大于10月7日成交量的增幅D.日认购量的方差大于日成交量的方差5.(多选题)在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.方法1:采用简单随机抽样的方法,将零件分别编号为00,01,02,…,99,用抽签法抽取20个.方法2:采用分层随机抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下列说法正确的是()A.无论采用哪种抽样方法,这100个零件中每一个零件被抽到的可能性都是1B.采用不同的方法,这100个零件中每一个零件被抽到的可能性各不相同C.在上述两种抽样方法中,方法2抽到的样本比方法1抽到的样本更能反映总体的特征D.在上述两种抽样方法中,方法1抽到的样本比方法2抽到的样本更能反映总体的特征6.(多选题)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()甲乙A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的平均数等于乙的成绩的平均数C.甲的成绩的第80百分位数等于乙的成绩的第80百分位数D.甲的成绩的极差等于乙的成绩的极差7.在一次竞选中,规定一个人获胜的条件如下:(1)在竞选中得票最多;(2)得票数不低于总票数的一半.在计票时,周鹏得票的数据丢失.候选人赵明钱红孙华李丽周鹏得票数3001003060x如果周鹏获胜,那么周鹏的得票数x的最小值为.8.(2023盐城调研)已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数据的方差为.

9.某大学艺术专业400名学生参加某次测评,根据男、女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成[20,30),[30,40),…,[80,90]七组,并整理得到如图所示的频率分布直方图:(1)从样本中随机抽取一人,求其分数小于70的频率.(2)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男、女生人数相等.试估计总体中男生和女生人数的比.综合提升练10.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,并得到频率分布直方图如图:则这20名工人一天生产该产品的数量的中位数为()A.65 B.64 C.62.5 D.6011.一组数据的平均数为a,方差为b,将这组数据的每个数都乘m(m>0)后得到一组新数据,则下列说法正确的是()A.这组新数据的平均数为aB.这组新数据的平均数为a+mC.这组新数据的方差为mbD.这组新数据的方差为m2b12.(多选题)(2023徐州质检)在第一次全市高三年级统考后,数学老师为了解本班学生的本次数学考试情况,将全班50名学生的数学成绩绘制成了频率分布直方图.已知该班级学生的数学成绩(单位:分)全部介于65到145之间(满分150分),将数学成绩按如下方式分成八组:第一组[65,75),第二组[75,85),…,第八组[135,145].按上述分组方法得到的频率分布直方图的一部分如图所示,则下列结论正确的是()A.第七组的频率为0.008B.该班级数学成绩的中位数的估计值为101C.该班级数学成绩的平均分的估计值大于95D.该班级数学成绩的方差的估计值大于2613.已知甲、乙两组数据如下表所示,其中a,b∈N*,若甲、乙两组数据的平均数相等,要使甲组数据的方差小于乙组数据的方差,则(a,b)为.(只需填一组)

甲12ab10乙12471114.某校从高一年级中随机抽取部分学生,将他们的期末数学测试成绩分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]6组加以统计,得到如图所示的频率分布直方图.据此统计,期末数学测试成绩不少于第60百分位数的分数至少为.

15.6月17日是联合国确定的“世界防治荒漠化和干旱日”,为增强全社会对防治荒漠化的认识与关注,聚焦联合国2030年可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗圃中随机地抽测了200株树苗的高度(单位:cm),得到如图所示的频率分布直方图.求频率分布直方图中a的值及众数、中位数.(2)已知树高为185cm及以上的是可以移栽的合格树苗.①求合格树苗的平均高度(结果精确到个位);②从样本中按分层抽样的方法抽取20株树苗进一步研究,不合格树苗、合格树苗分别应抽取多少株?创新应用练16.某小区毗邻一条公路,为了解交通噪声,有关部门连续25天监测噪声值(单位:分贝),得到频率分布直方图(图1),发现噪声污染严重,采取了在公路旁加装隔声板等治理措施,而后,再连续25天监测噪声值,得到频率分布直方图(图2).图1图2同一组中的数据用该组区间的中点值作代表,请解答下列问题:(1)根据上面两个频率分布直方图,估计治理后比治理前的平均噪声值降低了分贝.

(2)国家“城市区域环境噪声”规定:重度污染:>65分贝;中度污染:60~65分贝;轻度污染:55~60分贝;较好:50~55分贝;好:≤50分贝.把上述两个样本数据的频率视为概率,根据图1估算出该小区噪声治理前一年内(365天)噪声中度污染及以上的天数为277,根据图2估计一年内(365天)噪声中度污染及以上的天数比治理前减少了天.(精确到1天)

参考答案1.C2.A3.C4.D5.AC6.BCD7.4908.9.解(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从样本中随机抽取一人,其分数小于70的频率为0.4.(2)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30,所以样本中的男生人数为30×2女生人数为100-60=40,男生和女生人数的比为60∶40=3∶2.所以根据分层抽样原理,估计总体中男生和女生人数的比为3∶2.10.C11.D12.BCD13.(4,8)或(5,7)或(6,6)或(7,5)或(8,4)(填其中一个即可)14.7415.解(1)∵(0.0015+0.0110+0.0225+0.0300+a+0.0080+0.0020)×10=1,∴a=0.0250.众数为185+1952=190设中位数为x,∵(0.0015+0.0110+0.0225)×10=0.35<0.5,(0.0015+0.0110+0.0225+0.030)×10=0.65>0.5,∴185<x<195,(0.0015+0.0110+0.0225)×10+0.030(x-185)=0.5,∴x=190.(2)∵树苗高度为185cm及以上的频率是(0.0300+0.0250+0.0080+0.002

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论