版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某四棱锥的三视图如图所示,该几何体的体积是()A.8 B. C.4 D.2.已知下列命题:①“”的否定是“”;②已知为两个命题,若“”为假命题,则“”为真命题;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题.其中真命题的序号为()A.③④ B.①② C.①③ D.②④3.已知,,,则()A. B.C. D.4.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2 B.3 C. D.5.设函数,则函数的图像可能为()A. B. C. D.6.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥ B.若,,则∥C.若∥,,则 D.若,b∥,则7.在正方体中,点,,分别为棱,,的中点,给出下列命题:①;②;③平面;④和成角为.正确命题的个数是()A.0 B.1 C.2 D.38.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则()A. B. C. D.9.若x,y满足约束条件则z=的取值范围为()A.[] B.[,3] C.[,2] D.[,2]10.若,,则的值为()A. B. C. D.11.tan570°=()A. B.- C. D.12.某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是____.14.已知向量,,若,则______.15.已知双曲线的右准线与渐近线的交点在抛物线上,则实数的值为___________.16.已知实数,满足约束条件,则的最大值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:x12345y17.016.515.513.812.2(1)求y关于x的线性回归方程;(2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?参考公式:18.(12分)已知圆:和抛物线:,为坐标原点.(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标.19.(12分)已知函数.(1)若在上单调递增,求实数的取值范围;(2)若,对,恒有成立,求实数的最小值.20.(12分)已知椭圆的右焦点为,离心率为.(1)若,求椭圆的方程;(2)设直线与椭圆相交于、两点,、分别为线段、的中点,若坐标原点在以为直径的圆上,且,求的取值范围.21.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,22.(10分)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.【详解】根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,∴四棱锥的体积为.故选:D.【点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.2.B【解析】
由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B.【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.3.C【解析】
利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.【详解】,所以,即.故选:C.【点睛】本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.4.D【解析】
本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,,即,,因为圆的半径为,是圆的半径,所以,因为,,,,所以,三角形是直角三角形,因为,所以,,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,,将点坐标带入双曲线中可得,化简得,,,,故选D。【点睛】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。5.B【解析】
根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为:,函数为偶函数,排除,排除故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.6.C【解析】
根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足∥,b∥,故本命题不正确;B:当时,也可以满足,,故本命题不正确;C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;D:当时,也可以满足,b∥,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.7.C【解析】
建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数.【详解】设正方体边长为,建立空间直角坐标系如下图所示,,.①,,所以,故①正确.②,,不存在实数使,故不成立,故②错误.③,,,故平面不成立,故③错误.④,,设和成角为,则,由于,所以,故④正确.综上所述,正确的命题有个.故选:C【点睛】本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题.8.C【解析】
需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,,,,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题9.D【解析】
由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.【详解】由题意作出可行域,如图,目标函数可表示连接点和可行域内的点的直线斜率的倒数,由图可知,直线的斜率最小,直线的斜率最大,由可得,由可得,所以,,所以.故选:D.【点睛】本题考查了非线性规划的应用,属于基础题.10.A【解析】
取,得到,取,则,计算得到答案.【详解】取,得到;取,则.故.故选:.【点睛】本题考查了二项式定理的应用,取和是解题的关键.11.A【解析】
直接利用诱导公式化简求解即可.【详解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故选:A.【点睛】本题考查三角函数的恒等变换及化简求值,主要考查诱导公式的应用,属于基础题.12.C【解析】
由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】Aa设正四棱柱的高为h得到故得到正四棱柱的体积为故答案为54.14.1【解析】
根据向量加法和减法的坐标运算,先分别求得与,再结合向量的模长公式即可求得的值.【详解】向量,则,则因为即,化简可得解得故答案为:【点睛】本题考查了向量坐标加法和减法的运算,向量模长的求法,属于基础题.15.【解析】
求出双曲线的渐近线方程,右准线方程,得到交点坐标代入抛物线方程求解即可.【详解】解:双曲线的右准线,渐近线,双曲线的右准线与渐近线的交点,交点在抛物线上,可得:,解得.故答案为.【点睛】本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查,属于基础题.16.【解析】
令,所求问题的最大值为,只需求出即可,作出可行域,利用几何意义即可解决.【详解】作出可行域,如图令,则,显然当直线经过时,最大,且,故的最大值为.故答案为:.【点睛】本题考查线性规划中非线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)当时,年利润最大.【解析】
(1)方法一:令,先求得关于的回归直线方程,由此求得关于的回归直线方程.方法二:根据回归直线方程计算公式,计算出回归直线方程.方法一的好处在计算的数值较小.(2)求得w的表达式,根据二次函数的性质作出预测.【详解】(1)方法一:取,则得与的数据关系如下123457.06.55.53.82.2,,,.,,关于的线性回归方程是即,故关于的线性回归方程是.方法二:因为,,,,,所以,故关于的线性回归方程是,(2)年利润,根据二次函数的性质可知:当时,年利润最大.【点睛】本小题主要考查回归直线方程的求法,考查利用回归直线方程进行预测,考查运算求解能力,属于中档题.18.(1);(2)或.【解析】试题分析:直线与圆相切只需圆心到直线的距离等于圆的半径,直线与曲线相交于两点,且满足,只需数量积为0,要联立方程组设而不求,利用坐标关系及根与系数关系解题,这是解析几何常用解题方法,第二步利用直线的斜率找出坐标满足的要求,再利用两直线与圆相切,求出点的坐标.试题解析:(1)解:设,,,由和圆相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).当时,,故直线的方程为.(2)设,,,则.∴.设,由直线和圆相切,得,即.设,同理可得:.故是方程的两根,故.由得,故.同理,则,即.∴,解或.当时,;当时,.故或.19.(1)(2)【解析】
(1)求得,根据已知条件得到在恒成立,由此得到在恒成立,利用分离常数法求得的取值范围.(2)构造函数设,利用求二阶导数的方法,结合恒成立,求得的取值范围,由此求得的最小值.【详解】(1)因为在上单调递增,所以在恒成立,即在恒成立,当时,上式成立,当,有,需,而,,,,故综上,实数的取值范围是(2)设,,则,令,,在单调递增,也就是在单调递增,所以.当即时,,不符合;当即时,,符合当即时,根据零点存在定理,,使,有时,,在单调递减,时,,在单调递增,成立,故只需即可,有,得,符合综上得,,实数的最小值为【点睛】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于难题.20.(1);(2).【解析】
(1)由椭圆的离心率求出、的值,由此可求得椭圆的方程;(2)设点、,联立直线与椭圆的方程,列出韦达定理,由题意得出,可得出,【详解】(1)由题意得,,.又因为,,所以椭圆的方程为;(2)由,得.设、,所以,,依题意,,易知,四边形为平行四边形,所以.因为,,所以.即,将其整理为.因为,所以,.所以,即.【点睛】本题考查椭圆方程的求法和直线与椭圆位置关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 检验科质量管理制度(10篇)
- 硫化团队岗位资格认证理论笔试题库
- 企业学校招聘会106
- 《花的学校》教学设计
- 大班语言活动:大卫上学去
- 沼气工程施工与管理方案
- 小班语言活动春天来了教案
- 大学校园疫情防控应急演练方案
- 幼儿园美术创作活动方案
- 教师招聘学科面试写作课教案范例
- 2024年秋季新统编版七年级上册道德与法治全册教案
- 特殊教育语文教案(太阳)
- SAP增强实现批次自动编号
- 微积分方法建模12传染病模型数学建模案例分析
- 卫浴产品世界各国认证介绍
- 江苏省职工代表大会操作办法.doc
- 湘教版小学音乐五年级上册教学计划
- sch壁厚等级对照表
- 高新技术企业认定自我评价表
- 药物分类目录
- 中石油-细节管理手册 03
评论
0/150
提交评论