山东省临沂市2021-2022学年高三下学期第五次调研考试数学试题含解析_第1页
山东省临沂市2021-2022学年高三下学期第五次调研考试数学试题含解析_第2页
山东省临沂市2021-2022学年高三下学期第五次调研考试数学试题含解析_第3页
山东省临沂市2021-2022学年高三下学期第五次调研考试数学试题含解析_第4页
山东省临沂市2021-2022学年高三下学期第五次调研考试数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集,集合,.则集合等于()A. B. C. D.2.在中,,,,点,分别在线段,上,且,,则().A. B. C.4 D.93.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为()A. B. C. D.4.从抛物线上一点(点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为()A. B. C. D.5.()A. B. C. D.6.要得到函数的图象,只需将函数的图象上所有点的()A.横坐标缩短到原来的(纵坐标不变),再向左平移个单位长度B.横坐标缩短到原来的(纵坐标不变),再向右平移个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度7.将函数f(x)=sin3x-cos3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:①它的图象关于直线x=对称;②它的最小正周期为;③它的图象关于点(,1)对称;④它在[]上单调递增.其中所有正确结论的编号是()A.①② B.②③ C.①②④ D.②③④8.双曲线的渐近线方程是()A. B. C. D.9.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是()A. B.C. D.10.三棱锥的各个顶点都在求的表面上,且是等边三角形,底面,,,若点在线段上,且,则过点的平面截球所得截面的最小面积为()A. B. C. D.11.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.12.如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,记,则的展开式中各项系数和为__________.14.已知平行于轴的直线与双曲线:的两条渐近线分别交于,两点,为坐标原点,若为等边三角形,则双曲线的离心率为______.15.将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为__________.16.在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,,,,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.18.(12分)直线与抛物线相交于,两点,且,若,到轴距离的乘积为.(1)求的方程;(2)设点为抛物线的焦点,当面积最小时,求直线的方程.19.(12分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.20.(12分)选修4-5:不等式选讲已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.21.(12分)数列满足.(1)求数列的通项公式;(2)设,为的前n项和,求证:.22.(10分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.①求10件手工艺品中不能外销的手工艺品最有可能是多少件;②记1件手工艺品的利润为X元,求X的分布列与期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

先算出集合,再与集合B求交集即可.【详解】因为或.所以,又因为.所以.故选:A.【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.2.B【解析】

根据题意,分析可得,由余弦定理求得的值,由可得结果.【详解】根据题意,,则在中,又,则则则则故选:B【点睛】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.3.B【解析】

根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.4.A【解析】

根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【详解】设点的坐标为,由题意知,焦点,准线方程,所以,解得,把点代入抛物线方程可得,,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.5.A【解析】

分子分母同乘,即根据复数的除法法则求解即可.【详解】解:,故选:A【点睛】本题考查复数的除法运算,属于基础题.6.C【解析】

根据三角函数图像的变换与参数之间的关系,即可容易求得.【详解】为得到,将横坐标伸长到原来的2倍(纵坐标不变),故可得;再将向左平移个单位长度,故可得.故选:C.【点睛】本题考查三角函数图像的平移,涉及诱导公式的使用,属基础题.7.B【解析】

根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【详解】因为f(x)=sin3x-cos3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期为,故②正确;令3x+=kπ+,得x=+(k∈Z),所以x=不是对称轴,故①错误;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故③正确;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④错误;故选:B【点睛】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型8.C【解析】

根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.9.D【解析】

根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.10.A【解析】

由题意画出图形,求出三棱锥S-ABC的外接球的半径,再求出外接球球心到D的距离,利用勾股定理求得过点D的平面截球O所得截面圆的最小半径,则答案可求.【详解】如图,设三角形ABC外接圆的圆心为G,则外接圆半径AG=,设三棱锥S-ABC的外接球的球心为O,则外接球的半径R=取SA中点E,由SA=4,AD=3SD,得DE=1,所以OD=.则过点D的平面截球O所得截面圆的最小半径为所以过点D的平面截球O所得截面的最小面积为故选:A【点睛】本题考查三棱锥的外接球问题,还考查了求截面的最小面积,属于较难题.11.A【解析】

分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.12.C【解析】

利用建系,假设长度,表示向量与,利用向量的夹角公式,可得结果.【详解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作轴//,建立空间直角坐标系如图设,所以则所以所以故选:C【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

根据定积分的计算,得到,令,求得,即可得到答案.【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题.14.2【解析】

根据为等边三角形建立的关系式,从而可求离心率.【详解】据题设分析知,,所以,得,所以双曲线的离心率.【点睛】本题主要考查双曲线的离心率的求解,根据条件建立之间的关系式是求解的关键,侧重考查数学运算的核心素养.15.【解析】

由题意欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,将侧面积表示成关于的函数,再利用一元二次函数的性质求最值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,所以.∴,当时,的最大值为.故答案为:.【点睛】本题考查圆柱的侧面积的最值,考查函数与方程思想、转化与化归思想、,考查空间想象能力和运算求解能力,求解时注意将问题转化为函数的最值问题.16.【解析】

转化()为,即得解.【详解】由题意:().故答案为:【点睛】本题考查类比法求函数的值域,考查了学生逻辑推理,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2).【解析】

(1)证明后可得平面,从而得,结合已知得线面垂直;(2)以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角的余弦值.【详解】(1)证明:因为,为中点,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,两两垂直,所以以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,则,,,,,.设平面的法向量,则,即,令,则;设平面的法向量,则,即,令,则,所以.故锐二面角的余弦值为.【点睛】本题考查证明线面垂直,解题时注意线面垂直与线线垂直的相互转化.考查求二面角,求空间角一般是建立空间直角坐标系,用向量法易得结论.18.(1);(2)【解析】

(1)设出两点的坐标,由距离之积为16,可得.利用向量的数量积坐标运算,将转化为.再利用两点均在抛物线上,即可求得p的值,从而求出抛物线的方程;(2)设出直线l的方程,代入抛物线方程,由韦达定理发现直线l恒过定点,将面积用参数t表示,求出其最值,并得出此时的直线方程.【详解】解:(1)由题设,因为,到轴的距离的积为,所以,又因为,,,所以抛物线的方程为.(2)因为直线与抛物线两个公共点,所以的斜率不为,所以设联立,得,即,,即直线恒过定点,所以,当时,面积取得最小值,此时.【点睛】本题考查了抛物线的标准方程的求法,直线与抛物线相交的问题,其中垂直条件的转化,直线过定点均为该题的关键,属于综合性较强的题.19.(1);(2)或【解析】

(1)根据解析式求得导函数,设切点坐标为,结合导数的几何意义可得方程,构造函数,并求得,由导函数求得有最小值,进而可知由唯一零点,即可代入求得的值;(2)将解析式代入,结合零点定义化简并分离参数得,构造函数,根据题意可知直线与曲线有两个交点;求得并令求得极值点,列出表格判断的单调性与极值,即可确定与有两个交点时的取值范围.【详解】(1)依题意,,,设切点为,,故,故,则;令,,故当时,,当时,,故当时,函数有最小值,由于,故有唯一实数根0,即,则;(2)由,得.所以“在区间上有两个零点”等价于“直线与曲线在有两个交点”;由于.由,解得,.当变化时,与的变化情况如下表所示:30+0极小值极大值所以在,上单调递减,在上单调递增.又因为,,,,故当或时,直线与曲线在上有两个交点,即当或时,函数在区间上有两个零点.【点睛】本题考查了导数的几何意义应用,由切线方程求参数值,构造函数法求参数的取值范围,函数零点的意义及综合应用,属于难题.20.(1),(2)【解析】试题分析:用零点分区间讨论法解含绝对值的不等式,根据绝对值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范围.试题解析:(1)由题设知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式组解集的并集:,或,或,解得函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R时,恒有|x+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论