版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年河南省三门峡市重点达标名校中考数学模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C.. D.2.在解方程-1=时,两边同时乘6,去分母后,正确的是()A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)3.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A. B. C. D.4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.65.设x1,x2是方程x2-2x-1=0的两个实数根,则的值是()A.-6 B.-5 C.-6或-5 D.6或56.如图,数轴上表示的是下列哪个不等式组的解集()A. B. C. D.7.一元二次方程x2﹣8x﹣2=0,配方的结果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=148.-2的绝对值是()A.2 B.-2 C.±2 D.9.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过910.边长相等的正三角形和正六边形的面积之比为()A.1∶3 B.2∶3 C.1∶6 D.1∶二、填空题(共7小题,每小题3分,满分21分)11.若关于x的方程有增根,则m的值是▲12.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=_____.13.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是_________.14.计算:3﹣1﹣30=_____.15.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.16.已知a2+1=3a,则代数式a+的值为.17.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________.三、解答题(共7小题,满分69分)18.(10分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.(1)求AB的长;(2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系.19.(5分)先化简,再求值:(1﹣)÷,其中a=﹣1.20.(8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.(1)求证:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半径为3,求BC的长.21.(10分)如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点.求证:是⊙的切线;若,且,求⊙的半径与线段的长.22.(10分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△PAC为等腰三角形时,直接写出t的值.23.(12分)(1)计算:﹣22+|﹣4|+()-1+2tan60°(2)求不等式组的解集.24.(14分)如图,在▱ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.考点:轴对称图形和中心对称图形2、D【解析】解:,∴3(x﹣1)﹣6=2(3x+1),故选D.点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.3、C【解析】
左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确.故此题选C.4、C【解析】
如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C.考点:勾股定理的证明.5、A【解析】试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,∴x1+x2=2,x1∙x2=-1∴=.故选A.6、B【解析】
根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【详解】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,
A、不等式组的解集为x>-3,故A错误;B、不等式组的解集为x≥-3,故B正确;C、不等式组的解集为x<-3,故C错误;D、不等式组的解集为-3<x<5,故D错误.故选B.【点睛】本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.7、C【解析】x2-8x=2,
x2-8x+16=1,
(x-4)2=1.
故选C.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.8、A【解析】
根据绝对值的性质进行解答即可【详解】解:﹣1的绝对值是:1.故选:A.【点睛】此题考查绝对值,难度不大9、D【解析】
根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.10、C【解析】解:设正三角形的边长为1a,则正六边形的边长为1a.过A作AD⊥BC于D,则∠BAD=30°,AD=AB•cos30°=1a•=a,∴S△ABC=BC•AD=×1a×a=a1.连接OA、OB,过O作OD⊥AB.∵∠AOB==20°,∴∠AOD=30°,∴OD=OB•cos30°=1a•=a,∴S△ABO=BA•OD=×1a×a=a1,∴正六边形的面积为:2a1,∴边长相等的正三角形和正六边形的面积之比为:a1:2a1=1:2.故选C.点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于1的未知数的值求出x的值,然后代入进行计算即可求出m的值:方程两边都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.12、﹣1【解析】
根据一元二次方程的解的定义把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=−1,然后利用整体代入的方法进行计算.【详解】∵1(n≠0)是关于x的一元二次方程x1+mx+1n=0的一个根,∴4+1m+1n=0,∴n+m=−1,故答案为−1.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13、【解析】试题解析:∵四边形ABCD是矩形,∵AE⊥BD,∴△ABE∽△ADB,∵E是BC的中点,过F作FG⊥BC于G,故答案为14、﹣.【解析】
原式利用零指数幂、负整数指数幂法则计算即可求出值.【详解】原式=﹣1=﹣.故答案是:﹣.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.15、1或5.【解析】
小正方形的高不变,根据面积即可求出小正方形平移的距离.【详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,①如图,小正方形平移距离为1厘米;②如图,小正方形平移距离为4+1=5厘米.故答案为1或5,【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.16、1【解析】
根据题意a2+1=1a,整体代入所求的式子即可求解.【详解】∵a2+1=1a,∴a+=+===1.故答案为1.17、8【解析】
如图,连接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解决问题.【详解】解:如图,连接OC.∵AB是⊙O切线,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=,∴,∴AC=4,∴AB=2AC=8,故答案为8【点睛】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.三、解答题(共7小题,满分69分)18、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.【解析】
(1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;
(2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=,得到PA=AB-PB=,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=,根据切线的判定定理即可得到结论.【详解】(1)过A作AE⊥BC于E,
则四边形AECD是矩形,
∴CE=AD=1,AE=CD=3,
∵AB=BC,
∴BE=AB-1,
在Rt△ABE中,∵AB2=AE2+BE2,
∴AB2=32+(AB-1)2,
解得:AB=5;
(2)过P作PF⊥BQ于F,
∴BF=BQ=,
∴△PBF∽△ABE,
∴,
∴,
∴PB=,
∴PA=AB-PB=,
过P作PG⊥CD于G交AE于M,
∴GM=AD=1,∵DC⊥BC∴PG∥BC
∴△APM∽△ABE,
∴,
∴,
∴PM=,
∴PG=PM+MG==PB,
∴圆P与直线DC相切.【点睛】本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.19、原式==﹣2.【解析】分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.详解:原式===,当a=﹣1时,原式==﹣2.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.20、(1)证明见解析;(2)BC=1.【解析】
(1)连接OB,根据切线的性质和圆周角定理求出∠PBO=∠ABC=90°,即可求出答案;
(2)求出△ABC∽△PBO,得出比例式,代入求出即可.【详解】(1)连接OB,∵PB是⊙O的切线,∴PB⊥OB,∴∠PBA+∠OBA=90°,∵AC是⊙O的直径,∴∠ABC=90°,∠C+∠BAC=90°,∵OA=OB,∴∠OBA=∠BAO,∴∠PBA=∠C;(2)∵⊙O的半径是3,∴OB=3,AC=6,∵OP∥BC,∴∠BOP=∠OBC,∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴=,∴=,∴BC=1.【点睛】本题考查平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解题关键.21、(1)证明参见解析;(2)半径长为,=.【解析】
(1)已知点D在圆上,要连半径证垂直,连结,则,所以,∵,∴.∴,∴∥.由得出,于是得出结论;(2)由得到,设,则.,,,由,解得值,进而求出圆的半径及AE长.【详解】解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切线;(2)在和中,∵,∴.设,则.∴,.∵,∴.∴,解得=,则3x=,AE=6×-=6,∴⊙的半径长为,=.【点睛】1.圆的切线的判定;2.锐角三角函数的应用.22、(1)a=﹣;(2)﹣1<n<2;(3)满足条件的时间t为1s,2s,或(3+)或(3﹣)s.【解析】试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值.试题解析:(1)、解:∵点C是直线l1:y=x+1与轴的交点,∴C(0,1),∵点C在直线l2上,∴b=1,∴直线l2的解析式为y=ax+1,∵点B在直线l2上,∴2a+1=0,∴a=﹣;(2)、解:由(1)知,l1的解析式为y=x+1,令y=0,∴x=﹣1,由图象知,点Q在点A,B之间,∴﹣1<n<2(3)、解:如图,∵△PAC是等腰三角形,∴①点x轴正半轴上时,当AC=P1C时,∵CO⊥x轴,∴OP1=OA=1,∴BP1=OB﹣OP1=2﹣1=1,∴1÷1=1s,②当P2A=P2C时,易知点P2与O重合,∴BP2=OB=2,∴2÷1=2s,③点P在x轴负半轴时,AP3=AC,∵A(﹣1,0),C(0,1),∴AC=,∴AP3=,∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣)s,即:满足条件的时间t为1s,2s,或(3+)或(3﹣)s.点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案.在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案.23、(1)1;(2)-1≤x<1.【解析】试题分析:(1)、首先根据绝对值、幂、三角函数的计算法则得出各式的值,然后进行求和得出答案;(2)、分半求出每个不等式的解,然后得出不等式组的解.试题解析:解:(1)、(2)、由得:x<1,由得:x≥-1,∴不等式的解集:-1≤x<1.24、(1);(2)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 店铺承接协议样本
- 版房屋买卖合同让您购房更安心
- 2024工程修路合作合同范本
- 2024新版中国农业发展银行质押担保借款合同
- 2024建设工程施工的合同书范本
- 公寓承包转让合同模板
- 单位保洁安全合同模板
- 民间售房合同模板
- 智能燃气报警器的智能检测与安全提醒考核试卷
- 油管供货合同模板
- 混凝土结构设计原理课程设计报告报告
- 财经应用文写作教案
- 发动机的构造知识课件
- 干细胞治疗讲稿
- 孤独症精品课件
- DB13T 1349-2010 超贫磁铁矿勘查技术规范
- 新教材教科版六年级上册科学全册单元测试卷(含期中期末试卷)
- 一氧化铅-理化性质及危险特性表
- 上外研究生期末论文封面
- CMG软件组分模型操作手册
- 直流电机微课
评论
0/150
提交评论