版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省凉山州木里藏族自治县中学2025届高三高考仿真模拟卷数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则()A., B.,C., D.,2.某程序框图如图所示,若输出的,则判断框内为()A. B. C. D.3.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.4.复数的模为().A. B.1 C.2 D.5.已知直线与直线则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()A. B. C. D.7.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,,那么()A. B. C. D.8.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()A. B.C. D.9.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵中,,,当阳马体积的最大值为时,堑堵的外接球的体积为()A. B. C. D.10.为虚数单位,则的虚部为()A. B. C. D.11.设为非零实数,且,则()A. B. C. D.12.设,点,,,,设对一切都有不等式成立,则正整数的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是抛物线上一点,是圆关于直线对称的曲线上任意一点,则的最小值为________.14.在的展开式中,的系数等于__.15.已知函数()在区间上的值小于0恒成立,则的取值范围是________.16.已知函数是定义在上的奇函数,且周期为,当时,,则的值为___________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)联合国粮农组织对某地区最近10年的粮食需求量部分统计数据如下表:年份20102012201420162018需求量(万吨)236246257276286(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份—2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:年份—20140需求量—2570(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.18.(12分)如图,在直三棱柱中,,,为的中点,点在线段上,且平面.(1)求证:;(2)求平面与平面所成二面角的正弦值.19.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?20.(12分)已知数列满足,,数列满足.(Ⅰ)求证数列是等比数列;(Ⅱ)求数列的前项和.21.(12分)已知椭圆的左、右顶点分别为、,上、下顶点分别为,,为其右焦点,,且该椭圆的离心率为;(Ⅰ)求椭圆的标准方程;(Ⅱ)过点作斜率为的直线交椭圆于轴上方的点,交直线于点,直线与椭圆的另一个交点为,直线与直线交于点.若,求取值范围.22.(10分)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.(Ⅰ)若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;(Ⅱ)若直线的斜率存在且不为0,四边形为平行四边形,求证:;(Ⅲ)在(Ⅱ)的条件下,判断四边形能否为矩形,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【详解】表示取出的为一个白球,所以.表示取出一个黑球,,所以.表示取出两个球,其中一黑一白,,表示取出两个球为黑球,,表示取出两个球为白球,,所以.所以,.故选:C本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.2.C【解析】程序在运行过程中各变量值变化如下表:KS是否继续循环循环前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循环的条件应为k>5?本题选择C选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.3.B【解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.4.D【解析】
利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】解:,复数的模为.故选:D.本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题.5.B【解析】
利用充分必要条件的定义可判断两个条件之间的关系.【详解】若,则,故或,当时,直线,直线,此时两条直线平行;当时,直线,直线,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件,当时,可以推出,故“”是“”的必要条件,故选:B.本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.6.D【解析】
根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D.本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.7.D【解析】
由得,分别算出和的值,从而得到的值.【详解】∵,∴,∴,当时,,∴,当时,,∴,∴,故选:D.本小题主要考查对数运算,属于基础题.8.C【解析】
在等比数列中,由即可表示之间的关系.【详解】由题可知,等比数列中,且公比为2,故故选:C本题考查等比数列求和公式的应用,属于基础题.9.B【解析】
利用均值不等式可得,即可求得,进而求得外接球的半径,即可求解.【详解】由题意易得平面,所以,当且仅当时等号成立,又阳马体积的最大值为,所以,所以堑堵的外接球的半径,所以外接球的体积,故选:B本题以中国传统文化为背景,考查四棱锥的体积、直三棱柱的外接球的体积、基本不等式的应用,体现了数学运算、直观想象等核心素养.10.C【解析】
利用复数的运算法则计算即可.【详解】,故虚部为.故选:C.本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.11.C【解析】
取,计算知错误,根据不等式性质知正确,得到答案.【详解】,故,,故正确;取,计算知错误;故选:.本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.12.A【解析】
先求得,再求得左边的范围,只需,利用单调性解得t的范围.【详解】由题意知sin,∴,∴,随n的增大而增大,∴,∴,即,又f(t)=在t上单增,f(2)=-1<0,f(3)=2>0,∴正整数的最小值为3.本题考查了数列的通项及求和问题,考查了数列的单调性及不等式的解法,考查了转化思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由题意求出圆的对称圆的圆心坐标,求出对称圆的圆坐标到抛物线上的点的距离的最小值,减去半径即可得到的最小值.【详解】假设圆心关于直线对称的点为,则有,解方程组可得,所以曲线的方程为,圆心为,设,则,又,所以,,即,所以,故答案为:.该题考查的是有关动点距离的最小值问题,涉及到的知识点有点关于直线的对称点,点与圆上点的距离的最小值为到圆心的距离减半径,属于中档题目.14.7【解析】
由题,得,令,即可得到本题答案.【详解】由题,得,令,得x的系数.故答案为:7本题主要考查二项式定理的应用,属基础题.15.【解析】
首先根据的取值范围,求得的取值范围,由此求得函数的值域,结合区间上的值小于0恒成立列不等式组,解不等式组求得的取值范围.【详解】由于,所以,由于区间上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范围是.故答案为:本小题主要考查三角函数值域的求法,考查三角函数值恒小于零的问题的求解,考查化归与转化的数学思想方法,属于中档题.16.【解析】
由题意可得:,周期为,可得,可求出,最后再求的值即可.【详解】解:函数是定义在上的奇函数,.由周期为,可知,,..故答案为:.本题主要考查函数的基本性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)能够满足.【解析】
(1)根据表中数据,结合以“年份—2014”为横坐标,“需求量”为纵坐标的要求即可完成表格;(2)根据表中及所给公式可求得线性回归方程,由线性回归方程预测2020年的粮食需求量,即可作出判断.【详解】(1)由所给数据和已知条件,对数据处理表格如下:年份—2014024需求量—25701929(2)由题意可知,变量与之间具有线性相关关系,由(1)中表格可得,,,,.由上述计算结果可知,所求回归直线方程为,利用回归直线方程,可预测2020年的粮食需求量为:(万吨),因为,故能够满足该地区的粮食需求.本题考查了线性回归直线的求法及预测应用,属于基础题.18.见解析【解析】
(1)如图,连接,交于点,连接,,则为的中点,因为为的中点,所以,又,所以,从而,,,四点共面.因为平面,平面,平面平面,所以.又,所以四边形为平行四边形,所以,所以(2)因为,为的中点,所以,又三棱柱是直三棱柱,,所以,,互相垂直,分别以,,的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,因为,,所以,,,,所以,,.设平面的法向量为,则,即,令,可得,,所以平面的一个法向量为.设平面的法向量为,则,即,令,可得,,所以平面的一个法向量为,所以,所以平面与平面所成二面角的正弦值为.19.每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】
设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.20.(Ⅰ)见证明;(Ⅱ)【解析】
(Ⅰ)利用等比数列的定义结合得出数列是等比数列(Ⅱ)数列是“等比-等差”的类型,利用分组求和即可得出前项和.【详解】解:(Ⅰ)当时,,故.当时,,则,,数列是首项为,公比为的等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工程筒灯项目规划申请报告模稿
- 2025年海洋油气开采模块项目提案报告模稿
- 2024-2025学年邢台市柏乡县数学三上期末复习检测模拟试题含解析
- 2025年检测设备项目申请报告
- 2025年商业专用设备:条码设备项目申请报告模板
- 专业求职信九篇
- 2024-2025学年突泉县三上数学期末考试模拟试题含解析
- 中学教师辞职报告15篇
- 2025年卫浴树脂项目提案报告
- 大一新生军训动员大会心得10篇
- 2024年人教版八年级生物上册期末考试卷(附答案)
- 2024年叉车租赁合同经典版(四篇)
- 环保工程施工安全检查表
- 人教版五年级上册数学期末考试试卷含答案
- 小学科学青岛版(六三制)六年级上册全册教案(共25课)(2022秋)
- 2024焊接工艺规程
- 小学高年级课后服务 scratch3.0编程教学设计 一阶第27课 植物大战僵尸-僵尸来袭教学设计
- 2024年人民日报社招聘应届高校毕业生85人笔试高频难、易错点500题模拟试题附带答案详解
- 中西医结合科工作制度
- 初中道德与法治全六册复习提纲
- 沈鼓集团招聘笔试题库2024
评论
0/150
提交评论