版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE21-云南省云南师大附中2025届高三数学适应性月考卷(一)文(含解析)留意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清晰.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.一.选择题1.已知集合,,则()A. B. C. D.【答案】C【解析】【分析】依据集合中元素的特征,干脆得出结果.【详解】因为集合为数集,为点集,所以两集合没有共同元素,则.故选:C.【点睛】本题主要考查求集合的交集,属于基础题型.2.在复平面内,复数(为复数单位)对应的点在()A.第一象限 B.其次象限C.第三象限. D.第四象限【答案】D【解析】【分析】先依据复数除法运算化简出,即可得出对应点象限.【详解】,对应的点在第四象限.故选:D.【点睛】本题考查复数的除法运算,属于基础题.3.函数的零点所在的区间为()A. B. C. D.【答案】B【解析】【分析】函数单调递增,干脆计算和,由零点存在定理推断即可.【详解】解:函数单调递增,由零点存在定理,,故选:B.【点睛】考查零点存在定理的应用,基础题.4.已知,则()A. B. C. D.【答案】C【解析】分析】依据诱导公式,以及同角三角函数基本关系,将所求式子化为,即可得出结果.【详解】因为,所以,故选:C.【点睛】本题主要考查三角函数的化简求值,熟记同角三角函数基本关系以及诱导公式即可,涉及二倍角的余弦公式,属于基础题型.5.电影《达.芬奇密码》中,有这样一个情节:故事女主子公的祖父雅克.索尼埃为了告知孙女一个惊天的隐私又不被他人所知,就留下了一串奇异的数字13-3-2-21-1-1-8-5,将这串数字从小到大排列,就成为1-1-2-3-5-8-13-21,其特点是从第3个数字起,任何一个数字都是前面两个数字的和,它来自斐波那契数列,斐波那契数列与黄金分割有紧密的联系,苹果公司的logo(如图乙和丙)就是利用半径成斐波那契数列(1,1,2,3,5,8,13)的圆切割而成,在图甲的矩形ABCD中,任取一点,则该点落在阴影部分的概率是()
A. B. C. D.【答案】A【解析】【分析】依据图甲,分别求出阴影部分的面积,以及整个长方形的面积,面积比即为所求概率.【详解】由题意,阴影部分包括半径为和半径为的两个圆,面积分别为和,而整个长方形的宽为,长为,所以该点落在阴影部分的概率是.故选:A.【点睛】本题主要考查与面积有关的几何概型,属于基础题型.6.双曲线的右焦点为,且点F到双曲线C的一条渐近线的距离为1,则双曲线C的离心率为()A. B. C. D.【答案】B【解析】【分析】先由题意,得到,渐近线方程为,依据点到直线距离公式,求出,得出,即可求出离心率.【详解】因为双曲线的右焦点为,即,双曲线的渐近线方程为;又点F到双曲线C的一条渐近线的距离为1,所以,即,所以,则,因此.故选:B.【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简洁性质即可,属于基础题型.7.如图,在中,,,,点是边上靠近的三等分点,则()
A. B. C. D.【答案】A【解析】【分析】依据平面对量基本定理,由题意,得到,再由向量模的计算公式,即可求出结果.【详解】由题意,.所以,,故选:A.【点睛】本题主要考查求平面对量模,熟记向量数量积的运算法则即可,属于常考题型.8.在正项等比数列中,,前三项的和为7,若存在,使得,则的最小值为()A. B. C. D.【答案】A【解析】【分析】先求出数列的公比,再由可得,再利用基本不等式可求解.【详解】解:由,,解得或(舍去),由,即,得,所以,当且仅当时,等号成立,故选:A.【点睛】本题考查等比数列的性质和基本不等式的综合应用,属于基础题.9.如图,某几何体的三视图均为边长为2的正方形,则该几何体的体积是()
A. B. C.1 D.【答案】D【解析】【分析】先由三视图还原几何体,得到该几何体的体积为正方体的体积减去2个三棱锥的体积,进而可求出结果.【详解】由题意三视图对应的几何体如图所示,所以该几何体的体积为正方体的体积减去2个三棱锥的体积,即,故选:D.【点睛】本题主要考查由三视图求几何体的体积,熟记几何体的结构特征即可,属于基础题型.10.设动直线x=t与曲线以及曲线分别交于P,Q两点,表示的最小值,则下列描述正确的是()A. B.C. D.【答案】B【解析】【分析】依据条件将表示为函数的形式,然后利用导数探讨对应函数的单调性并分析的取值范围.【详解】依据条件可知,所以,不妨令,则,又因为,所以存在,使得,所以在上递减,在上递增,所以在处取得最小值,且,依据对勾函数的单调性可知:在上单调递减,所以,所以有,故选:B.【点睛】本题考查利用导数解决函数的最值问题,对学生的转化与化归实力要求较高,其中对于极值点范围的分析是一个重点,难度较难.11.过抛物线的焦点作抛物线的弦,与抛物线交于,两点,分别过,两点作抛物线的切线,相交于点,又常被称作阿基米德三角形.的面积的最小值为()A. B. C. D.【答案】C【解析】【分析】设出直线的方程,利用弦长公式求出弦长,求出两条切线的方程得出点的坐标,利用三角形的面积公式可得.【详解】设,,由题意可得直线AB的斜率不为0,因为直线AB过焦点,所以设直线AB的方程;联立得,所以,由抛物线的性质可得过点,的抛物线的切线方程为:,联立得,,即.点到直线的距离,当且仅当时取到最小值.故选:C.【点睛】本题主要考查直线和抛物线的位置关系,结合韦达定理求解弦长,依据点到直线的距离求出三角形的高,依据面积公式的特点求出最值,侧重考查数学运算的核心素养.12.已知函数,则()A.2024 B.2020 C.4038 D.【答案】C【解析】【分析】先推断出关于成中心对称,由此求得所求表达式的值.【详解】,令,,则为奇函数,所以关于坐标原点对称,则关于成中心对称,则有,所以.故选:C【点睛】本小题主要考查函数的奇偶性、对称性,属于中档题.二、填空题13.设实数,满意,则的最小值为_________【答案】【解析】【分析】画出不等式所表示的平面区域,依据目标函数的几何意义,结合图形,即可得出结果.【详解】画出所表示的平面区域如下,由得,则表示直线在轴上的截距;由图像可得,当直线过点时,在轴上的截距最小;由得,因此.故答案为:.【点睛】本题主要考查求线性规划的最值,利用数形结合的方法求解即可,属于常考题型.14.过原点与曲线相切的切线方程为______.【答案】【解析】【分析】设切点坐标为,求得,列出方程,求得,得到,即可求得切线的方程.【详解】设切点坐标为,切线方程为,由,则,则,则,即,即,解得,所以,所以原点与曲线相切的切线方程为.故答案为:【点睛】本题主要考查了过点出的切线方程的求解,其中解答中熟记到导数点几何意义,以及过点处的切线方程的解法是解答的关键,着重考查推理与运算实力.15.已知P是直线l:上一动点,过点P作圆C:的两条切线,切点分别为A、B.则四边形PACB面积的最小值为___________.【答案】2【解析】【分析】由圆的方程为求得圆心、半径r为,由“若四边形面积最小,则圆心与点的距离最小时,即距离为圆心到直线的距离时,切线长,最小”,最终将四边形转化为两个直角三角形面积求解.【详解】由题意得:圆的方程为:∴圆心为,半径为2,又∵四边形PACB的面积,所以当PC最小时,四边形PACB面积最小.将代入点到直线的距离公式,,故四边形PACB面积的最小值为2.故答案为:2【点睛】本题主要考查直线与圆的位置关系,主要涉及了构造四边形及其面积的求法,同时,还考查了转化思想.此题属中档题.16.已知四棱锥,底面为正方形,平面,,,球与四棱锥的每个面都相切,则球的半径为______.【答案】【解析】【分析】计算出四棱锥的表面积,利用等体积法计算出球的半径.【详解】依题意底面为正方形,平面,所以,由于,所以平面,平面,所以,设内切球的半径为,,四棱锥的表面积,则有,解得.故答案为:【点睛】本小题主要考查几何体内切球的有关计算,属于基础题.三、解答题17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知(1)求角C;(2)若,且,求△ABC的面积.【答案】(1);(2)或.【解析】【分析】(1)由正弦定理将角化为边,再依据余弦定理可求出,继而得出角C;(2)依据条件可得,分和两种状况探讨可求出面积.【详解】(1)已知,由正弦定理,,整理得,由余弦定理:,又,所以.(2)已知,整理得,,即.①当时,为直角三角形,,;②当时,,所以,为等边三角形,,的面积为或.【点睛】本题考查正余弦定理的应用以及三角恒等变换解三角形,考查三角形面积的求解,属于中档题.18.某市数学教研员为了解本市高二学生的数学学习状况,从全市高二学生中随机抽取了20名学生,对他们的某次市统测数学成果进行统计,统计结果如图
(1)求x的值和数学成果在90分以上的人数;(2)用样本估计总体,把频率作为概率,从该市全部的中学生(人数许多)中随机选取4人,用ξ表示所选4人中成果在110以上的人数,试写出ξ的分布列,并求出ξ的数学期望【答案】(1)0.02;12;(2)分布列见解析,0.8.【解析】【分析】(1)依据频率之和为1,由频率分布直方图列出方程,即可求出,进而可求出数学成果在90分以上的人数;(2)先得出从该市全部的中学生中任取一人,成果在110以上的概率,由题意,可得,进而可求出分布列和数学期望.【详解】(1)由题意,x的值为,数学成果在90分以上的人数:.(2)把频率作为概率,从该市全部的中学生中任取一人,成果在110以上的概率,所以从该市全部的中学生(人数许多)中随机选取4人,所选4人中成果在110以上的人数,随机变量的取值可能为0,1,2,3,4,,,,,,随机变量的分布列01234P0.40960.40960.15360.02560.0016随机变量数学期望.【点睛】本题主要考查由频率分布直方图求参数,考查求二项分布的分布列和期望,属于常考题型.19.如图,在三棱柱中,,平面,,.(1)证明:平面平面;(2)求三棱锥的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)面面垂直转化为线面垂直,只需证明平面即可;(2)转化为即可解得.【详解】(1)证明:∵平面,平面,∴.又∵,∵,∴平面.又∵平面,∴平面平面.(2).【点睛】本题考查了面面垂直的推断和棱锥体积的求解,属于中档题目,解题中首先留意利用面面垂直推断定理证明面面垂直的书写要规范,其次在计算三棱锥的体积时一般要留意转化,选择合适的顶点和底面.20.已知函数且.(1)探讨函数的单调性;(2)当时,若函数的图象与轴交于,两点,设线段中点的横坐标为,证明:.【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)先对函数求导,得到,分别探讨和两种状况,进而可得出函数单调性;(2)先由(1)得到,,对其求导,判定时,单调递增;将转化为,设,,且,将问题转化为证明;依据题意,得到,证明,令,,依据导数的方法判定其单调性,即可得出,进而可得结论成立.【详解】(1)函数的定义域为,,解得(舍去),.当时,在上恒成立,所以函数单调递增;当时,在上,函数单调递减,在上,函数单调递增.综上,时,函数单调递增;时,在上单调递减;在上单调递增;(2)由(1)知,,,令,,则,当时,恒成立,所以单调递增,即单调递增;又,故要证,即证;设,,且,由题设条件知,,因此只需证;由题意,,两式作差可得,,即,即,下面先证明,即证,令,,则明显成立,所以在上单调递增,则,所以,即,所以,因此,即,,即因此,所以原命题得证【点睛】本题主要考查判定函数单调性,考查导数的方法证明不等式,属于常考题型.21.已知点P是椭圆C:上一点,F1、F2分别是椭圆的左、右焦点,(1)求椭圆C的标准方程;(2)设直线l不经过P点且与椭圆C相交于A,B两点.若直线PA与直线PB的斜率之和为1,问:直线l是否过定点?证明你的结论【答案】(1);(2)直线l过定点.证明见解析.【解析】【分析】(1)由椭圆定义可知,再代入P即可求出,写出椭圆方程;(2)设直线l的方程,联立椭圆方程,求出和之间的关系,即可求出定点.【详解】(1)由,得,又在椭圆上,代入椭圆方程有,解得,所以椭圆C标准方程为.(2)证明:当直线l的斜率不存在时,,,,解得,不符合题意;当直线l的斜率存在时,设直线l的方程,,,由,整理得,,,.由,整理得,即.当时,此时,直线l过P点,不符合题意;当时,有解,此时直线l:过定点.【点睛】本题考查椭圆方程的求法,考查椭圆中直线过定点问题,属于中档题.请考生在第22、23两题中任选一题作答,并用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼教客服工作总结
- 2024年财务咨询服务合同标的为企业上市辅导
- 2024年防腐木桥梁建设合同3篇
- 2025版矿产购销与地质环境监测合同范本3篇
- 物流公司前台工作心得
- 2024年跨国游戏开发与发行合同
- 2024年标准商铺转租协议版B版
- 2024年迭代版游戏设计师聘用协议书
- 2024年购买保险合同协议书(含保险理赔)
- 二零二五年度个人电工电力行业标准制定与实施承包协议3篇
- 房地产法律风险防范手册
- 《监考人员培训》课件
- 期末综合测试卷(试题)-2024-2025学年四年级上册数学人教版
- 分布式光伏发电项目计划书
- 2024-2025学年广东省肇庆鼎湖中学高三上学期9月考试英语试题(含答案)
- 黑龙江省哈尔滨市2023-2024学年七年级上学期期末统考学业水平调研测试语文试卷(解析版)
- 2024年人力资源年度工作总结参考(2篇)
- DB52T 1776.1-2023 耕地质量等别评价 第1部分:评价规范
- 社工个人工作述职报告
- 《人力资源管理》大学期末测试题库500题(含答案)
- 加盟店铺转手合同
评论
0/150
提交评论