辽宁省沈阳市第一三四中学2023年数学八上期末检测试题【含解析】_第1页
辽宁省沈阳市第一三四中学2023年数学八上期末检测试题【含解析】_第2页
辽宁省沈阳市第一三四中学2023年数学八上期末检测试题【含解析】_第3页
辽宁省沈阳市第一三四中学2023年数学八上期末检测试题【含解析】_第4页
辽宁省沈阳市第一三四中学2023年数学八上期末检测试题【含解析】_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省沈阳市第一三四中学2023年数学八上期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.现有甲,乙两个工程队分别同时开挖两条600m长的隧道,所挖遂道长度y(m)与挖掘时间x(天)之间的函数关系如图所示.则下列说法中,错误的是()A.甲队每天挖100mB.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当时,甲、乙两队所挖管道长度相同2.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将,换算成十进制数应为:;.按此方式,将二进制换算成十进制数和将十进制数13转化为二进制的结果分别为()A.9, B.9, C.17, D.17,3.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等 B.不相等 C.互余或相等 D.互补或相等4.若点在第二象限,则点所在象限应该是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列大学校徽主体图案中,是轴对称图形的是()A. B. C. D.6.已知a、b、c是△ABC三边的长,则+|a+b-c|的值为()A.2a B.2b C.2c D.一7.下列计算中正确的是().A. B. C. D.8.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D9.如图所示,∠1=∠2=150°,则∠3=()A.30° B.150° C.120° D.60°10.已知为正整数,也是正整数,那么满足条件的的最小值是()A.3 B.12 C.2 D.192二、填空题(每小题3分,共24分)11.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.12.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为________.13.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=98°,若∠1=35°,则∠2=_____度.14.在平面直角坐标系中点P(-2,3)关于x轴的对称点在第_______象限15.方程的根是______。16.若A,则A=(___________)17.如图,在△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=6,CF=2,则AC=________.18.若a=-0.22,b=-2-2,c=(-)-2,d=(-)0,将a,b,c,d按从大到小的顺序用“>”连接起来:__________.三、解答题(共66分)19.(10分)如图,正方形的顶点是坐标原点,边和分别在轴、轴上,点的坐标为.直线经过点,与边交于点,过点作直线的垂线,垂足为,交轴于点.(1)如图1,当时,求直线对应的函数表达式;(2)如图2,连接,求证:平分.20.(6分)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)21.(6分)如下图所示,在直角坐标系中,第一次将△OAB变换成,第二次将变换成,第三次将变换成,已知,,,,,,.(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将变换成,则的坐标为,的坐标为.(2)可以发现变换过程中……的纵坐标均为.(3)按照上述规律将△OAB进行n次变换得到,则可知的坐标为,的坐标为.(4)线段的长度为.22.(8分)在如图所示的平面直角坐标系中,描出点A(3,2)和点B(-1,4).(1)求点A(3,2)关于x轴的对称点C的坐标;(2)计算线段BC的长度.23.(8分)小明和爷爷元旦登山,小明走较陡峭的山路,爷爷走较平缓的步道,相约在山顶会合.已知步道的路程比山路多700米,小明比爷爷晚出发半个小时,小明的平均速度为每分钟50米.图中的折线反映了爷爷行走的路程y(米)与时间x(分钟)之间的函数关系.(1)爷爷行走的总路程是_____米,他在途中休息了_____分钟,爷爷休息后行走的速度是每分钟_____米;(2)当0≤x≤25时,y与x的函数关系式是___;(3)两人谁先到达终点?这时另一个人离山顶还有多少米?24.(8分)化简求值:,其中,x=2+.25.(10分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?26.(10分)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.

参考答案一、选择题(每小题3分,共30分)1、D【分析】从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【详解】解:由图象,得600÷6=100米/天,故A正确;(500-300)÷4=50米/天,故B正确;由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8-6=2天,∴甲队比乙队提前2天完成任务,故C正确;当x=3时,甲队所挖管道长度=3×100=300米,乙队所挖管道长度=300+(3-2)×50=350米,故D错误;故选:D.【点睛】本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.2、A【分析】首先理解十进制的含义,然后结合有理数混合运算法则及顺序进一步计算即可.【详解】将二进制换算成十进制数如下:;将十进制数13转化为二进制数如下:……1,……0,……1,∴将十进制数13转化为二进制数后得,故选:A.【点睛】本题主要考查了有理数运算,根据题意准确理解十进制与二进制的关系是解题关键.3、D【分析】作出图形,然后利用“HL”证明Rt△ABG和Rt△DEH全等,根据全等三角形对应角相等可得∠B=∠DEH,再分∠E是锐角和钝角两种情况讨论求解.【详解】如图,△ABC和△DEF中,AB=DE,BC=EF,AG、DH分别是△ABC和△DEF的高,且AG=DH,在Rt△ABG和Rt△DEH中,,∴Rt△ABG≌Rt△DEH(HL),∴∠B=∠DEH,∴若∠E是锐角,则∠B=∠DEF,若∠E是钝角,则∠B+∠DEF=∠DEH+∠DEF=180°,故这两个三角形的第三边所对的角的关系是:互补或相等.故选D.4、A【分析】根据平面直角坐标系中,点的坐标特征与所在象限的关系,即可得到答案.【详解】∵点在第二象限,∴a<0,b>0,∴b+5>0,1-a>0,∴点在第一象限,故选A.【点睛】本题主要考查平面直角坐标系中,点的坐标特征与所在象限的关系,掌握各个象限内点的横纵坐标的正负性,是解题的关键.5、C【解析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,逐一判断即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项是轴对称图形,故本选项符合题意;D选项不是轴对称图形,故本选项不符合题意.故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.6、B【解析】试题解析:∵三角形两边之和大于第三边,两边之差小于第三边,

∴a-b-c<0,a+b-c>0

∴+|a+b-c|=b+c-a+a+b-c=2b.

故选B.7、D【分析】根据合并同类项,可判断A;根据同底数幂的除法,可判断B;根据同底数幂的乘法,可判断C;根据积的乘方,可判断D.【详解】A、不是同类项不能合并,故A错误;

B、同底数幂的除法底数不变指数相减,故B错误;

C、同底数幂的乘法底数不变指数相加,故C错误;

D、积的乘方等于乘方的积,故D正确;

故选:D.【点睛】此题考查积的乘方,合并同类项,同底数幂的除法,同底数幂的乘法,解题关键在于掌握积的乘方等于每一个因式分别乘方,再把所得的幂相乘.8、B【分析】,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】,,,,因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.9、D【解析】由∠1,∠2的度数,利用邻补角互补可求出∠ABC,∠BAC的度数,再利用三角形的外角性质即可求出∠3的度数.【详解】解:∵∠1=∠2=150°,

∴∠ABC=∠BAC=180°-150°=30°,

∴∠3=∠ABC+∠BAC=60°.

故选:D.【点睛】本题考查了三角形的外角性质以及邻补角,牢记“三角形的一个外角等于和它不相邻的两个内角的和”是解题的关键.10、A【分析】因为是正整数,且==,因为是整数,则1n是完全平方数,可得n的最小值.【详解】解:∵是正整数,则==,是正整数,∴1n是完全平方数,满足条件的最小正整数n为1.故选A.【点睛】此题主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则,解题关键是分解成一个完全平方数和一个代数式的积的形式.二、填空题(每小题3分,共24分)11、50°.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.12、12cm【分析】利用翻折变换的性质得出AD=BD,进而利用AD+CD=BC得出即可.【详解】∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD.∵AC=5cm,△ADC的周长为17cm,∴AD+CD=BC=17﹣5=12(cm).故答案为12cm.【点睛】本题考查了翻折变换的性质,根据题意得出AD=BD是解题的关键.13、1.【分析】由直线a∥b,利用“两直线平行,内错角相等”可得出∠3的度数,结合∠2+∠3+∠BAC=180°及∠BAC=98°,即可求出∠2的度数.【详解】解:如图,∵直线a∥b,∴∠3=∠1=35°,∵∠2+∠3+∠BAC=180°,∠BAC=98°,∴∠2=180°﹣∠3﹣∠BAC=180°﹣35°﹣98°=1°,故答案为:1.【点睛】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.14、三【分析】先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得对称点的坐标,再根据坐标符号判断所在象限即可.【详解】解:点P(-2,3)关于x轴的对称点为(-2,-3),

(-2,-3)在第三象限.

故答案为:三【点睛】本题主要考查平面直角坐标系中各象限内点的坐标的符号,以及关于x轴的对称点横坐标相同,纵坐标互为相反数.15、0或-1【解析】由得+x=0,x(x+1)=0,x=0或x=-1故答案为:0或-116、2【分析】由A,得A=,计算可得.【详解】由A,得A==2.故答案为2【点睛】本题考核知识点:分式的加法.解题关键点:掌握分式的加法法则.17、1【分析】根据垂直平分线的性质可得AF=BF=6,然后根据已知条件即可求出结论.【详解】解:∵EF是AB的垂直平分线,BF=6,∴AF=BF=6∵CF=2,∴AC=AF+CF=1.故答案为:1.【点睛】本题考查的是垂直平分线的性质,掌握垂直平分线的性质找到相等线段是解决此题的关键.18、c>d>a>b【解析】根据实数的乘方法则分别计算比较大小即可。【详解】∵a=-0.22=-0.04;b=-2-2=-=-=-0.25,c=(-)-2=4,d=(-)0=1,∴c>d>a>b.故本题答案应为:c>d>a>b.【点睛】本题的考点是实数的乘方及实数的大小比较,计算出每一个实数的乘方是解题的关键。三、解答题(共66分)19、(1);(2)证明见解析.【解析】(1)先证明,求出M的坐标,再代入C点坐标即可求解直线解析式;(2)过点作于,于,证明,得到即可求解.【详解】(1)由已知:∴又,∴∴,即设直线的函数表达式为将和代入得,解得,,即直线的函数表达式为(2)过点作于,于,则,又,∴,∴∴点落在的平分线上,即平分【点睛】此题主要考查坐标与图形,解题的关键是熟知正方形的性质、全等三角形的判定与性质、待定系数法求出函数解析式及角平分线的判定定理.20、答案作图见解析【分析】根据题意知道,点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点C应是它们的交点.【详解】解:连接A,B两点,作AB的垂直平分线,作两直线交角的角平分线,交点有两个.(1)作两条公路夹角的平分线OD或OE;(2)作线段AB的垂直平分线FG;则射线OD,OE与直线FG的交点C1,C2就是所求的位置.考点:作图-应用与设计作图21、(1)(16,2);(32,0);(2)2;(3)(2n,2);(2n+1,0);(4)【分析】(1)根据A1、A2、A3和B1、B2、B3的坐标找出规律,求出A4的坐标、B4的坐标;(2)根据A1、A2、A3的纵坐标找出规律,根据规律解答;(3)根据将△OAB进行n次变换得到△OAnBn的坐标变化总结规律,得到答案;(4)根据勾股定理计算.【详解】(1)∵A1(2,2),A2(4,2)A3(8,2),∴A4的坐标为(16,2),∵B1(4,0),B2(8,0),B3(16,0),∴B4的坐标为(32,0),故答案为:(16,2);(32,0);(2)变换过程中A1,A2,A3……An的纵坐标均为2,故答案为:2;(3)按照上述规律将△OAB进行n次变换得到△OAnBn,则可知An的坐标为(2n,2),Bn的坐标为(2n+1,0)故答案为:(2n,2);(2n+1,0);(4)∵An的横坐标为2n,Bn﹣1的横坐标为2n,∴AnBn﹣1⊥x轴,又An的纵坐标2,由勾股定理得,线段OAn的长度为:=,故答案为:.【点睛】本题考查的是坐标与图形、图形的变换、图形的变化规律,正确找出变换前后的三角形的变化规律、掌握勾股定理是解题的关键.22、点A和点B的位置如图,见解析;(1)点A关于x轴的对称点C的坐标为(3,-2);(2)BC=.【分析】先根据已知描出点A和点B的位置;(1)根据平面内两个关于x轴对称的点,横坐标不变,纵坐标互为相反数即可确定C的坐标;(2)直接用两点距离公式即可求解.【详解】解:点A和点B的位置如图:(1)点A关于x轴的对称点C的坐标为(3,-2);(2)BC=.【点睛】本题考查的主要是平面直角坐标系内点的计算,掌握点的对称规律以及两点距离公式是解题的关键.23、(1)1700,10,35;(2)y=40x;(3)小明先到,这时爷爷离开山顶还有175米【分析】(1)根据图象信息即可求解;(2)根据待定系数法即可求解;(3)先求出小明花的时间,比较即可得出结论,然后根据爷爷的速度即可求得离山顶的距离.【详解】解:(1)根据图象知:爷爷行走的总路程是1700米,他在途中休息了10分钟,爷爷休息后行走的速度是:35米/分钟;(2)设函数关系式为可得:解得:∴函数关系式为:y=40x;(3)(分钟),(分钟)所以,从爷爷出发开始计时,小明50分钟到达山顶.因为爷爷用了55分钟,所以小明先到.这时爷爷离终点还有(55-50)×35=175(米)答:小明先到,这时爷爷离山顶还有175米.【点睛】此题主要考查观察函数图象和待定系数法求正比例函数解析式,正确读出函数图象的信息是解题关键.24、,【分析】直接利用分式的性质分别化简进而把已知数据代入求出答案.【详解】解:原式=====当x=2+时,原式==.【点睛】此题主要考查了分式的化简求值,能够正确化简分式是解题关键.25、(1)甲车单独运完

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论