版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§8.2两条直线的位置关系考试要求1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两条直线的交点坐标.3.掌握平面上两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知识梳理1.两条直线的位置关系直线l1:y=k1x+b1,l2:y=k2x+b2,l3:A1x+B1y+C1=0,l4:A2x+B2y+C2=0(其中l1与l3是同一条直线,l2与l4是同一条直线)的位置关系如下表:位置关系l1,l2满足的条件l3,l4满足的条件平行k1=k2且b1≠b2A1B2-A2B1=0且A1C2-A2C1≠0垂直k1·k2=-1A1A2+B1B2=0相交k1≠k2A1B2-A2B1≠02.三种距离公式(1)两点间的距离公式①条件:点P1(x1,y1),P2(x2,y2).②结论:|P1P2|=eq\r(x2-x12+y2-y12).③特例:点P(x,y)到原点O(0,0)的距离|OP|=eq\r(x2+y2).(2)点到直线的距离点P(x0,y0)到直线l:Ax+By+C=0的距离d=eq\f(|Ax0+By0+C|,\r(A2+B2)).(3)两条平行直线间的距离两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0间的距离d=eq\f(|C1-C2|,\r(A2+B2)).常用结论1.直线系方程(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+n=0(n∈R).(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.2.五种常用对称关系(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).(2)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).(4)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).(5)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l1和l2斜率都存在时,一定有k1=k2⇒l1∥l2.()(2)若两条直线l1与l2垂直,则它们的斜率之积一定等于-1.()(3)直线外一点与直线上点的距离的最小值就是点到直线的距离.()(4)若点A,B关于直线l:y=kx+b(k≠0)对称,则直线AB的斜率等于-eq\f(1,k),且线段AB的中点在直线l上.()教材改编题1.点A(2,5)到直线l:x-2y+3=0的距离为()A.2eq\r(5)B.eq\f(\r(5),5)C.eq\r(5)D.eq\f(2\r(5),5)2.若直线2x+my+1=0与直线3x+6y-1=0平行,则m等于()A.4B.-4C.1D.-13.直线x-2y-3=0关于x轴对称的直线方程为________.题型一两条直线的平行与垂直例1(1若l1:3x-my-1=0与l2:3(m+2)x-3y+1=0是两条不同的直线,则“m=1”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知直线l1:ax+(a-1)y+3=0,l2:2x+ay-1=0,若l1⊥l2,则实数a的值是()A.0或-1 B.-1或1C.-1 D.1思维升华判断两条直线位置关系的注意点(1)斜率不存在的特殊情况.(2)可直接利用直线方程系数间的关系得出结论.跟踪训练1(1)设a,b,c分别为△ABC中角A,B,C所对边的边长,则直线xsinA+ay+c=0与bx-ysinB+sinC=0的位置关系是()A.相交但不垂直 B.垂直C.平行 D.重合(2)已知两直线l1:(m-1)x-6y-2=0,l2:mx+y+1=0,若l1⊥l2,则m=________;若l1∥l2,则m=________.题型二两直线的交点与距离问题例2(1)两条平行直线2x-y+3=0和ax-3y+4=0间的距离为d,则a,d分别为()A.a=6,d=eq\f(\r(6),3)B.a=-6,d=eq\f(\r(6),3)C.a=-6,d=eq\f(\r(5),3)D.a=6,d=eq\f(\r(5),3)(2)(多选)已知直线l经过点P(3,1),且被两条平行直线l1:x+y+1=0和l2:x+y+6=0截得的线段长为5,则直线l的方程为()A.y=1 B.x=3C.y=0 D.x=2思维升华利用距离公式应注意的点(1)点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|.(2)两条平行线间的距离公式要把两条直线方程中x,y的系数化为相等.跟踪训练2(1)经过两直线l1:2x-y+3=0与l2:x+2y-1=0的交点,且平行于直线3x+2y+7=0的直线方程是()A.2x-3y+5=0 B.2x+3y-1=0C.3x+2y-2=0 D.3x+2y+1=0(2)若点(m,n)在直线l:3x+4y-13=0上,则(m-1)2+n2的最小值为()A.3B.4C.2D.6题型三对称问题命题点1点关于点的对称问题例3直线3x-2y=0关于点eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),0))对称的直线方程为()A.2x-3y=0 B.3x-2y-2=0C.x-y=0 D.2x-3y-2=0命题点2点关于直线的对称问题例4已知两点A(-4,8),B(2,4),点C在直线y=x+1上,则|AC|+|BC|的最小值为()A.2eq\r(13)B.9C.eq\r(74)D.10命题点3直线关于直线的对称问题例5两直线方程为l1:3x-2y-6=0,l2:x-y-2=0,则l1关于l2对称的直线方程为()A.3x-2y-4=0 B.2x+3y-6=0C.2x-3y-4=0 D.3x-2y-6=0思维升华对称问题的求解策略(1)解决对称问题的思路是利用待定系数法将几何关系转化为代数关系求解.(2)中心对称问题可以利用中点坐标公式解题,两点轴对称问题可以利用垂直和中点两个条件列方程组解题.跟踪训练3已知直线l:2x-3y+1=0,点A(-1,-2).求:(1)点A关于直线l的对称点A′的坐标;(2)直线m:3x-2y-6=0关于直线l对称的直线m′的方程;(3)直线l关于点A的对称直线l′的方程.课时精练1.已知直线l1经过点A(2,a-1),B(a,4),且与直线l2:2x+y-3=0平行,则a等于()A.-2B.2C.-1D.12.若直线ax-4y+2=0与直线2x+5y+c=0垂直,垂足为(1,b),则a+b+c等于()A.-6B.4C.-10D.-43.已知a2-3a+2=0,则直线l1:ax+(3-a)y-a=0和直线l2:(6-2a)x+(3a-5)y-4+a=0的位置关系为()A.垂直或平行 B.垂直或相交C.平行或相交 D.垂直或重合4.在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x-2y+1=0和x-2y+3=0,另一组对边所在的直线方程分别为3x+4y+c1=0和3x+4y+c2=0,则|c1-c2|等于()A.2eq\r(3)B.2eq\r(5)C.2D.45.直线y=eq\f(\r(3),3)x关于直线x=1的对称直线为l,则直线l的方程是()A.eq\r(3)x+y-2=0 B.eq\r(3)x+y+2=0C.x+eq\r(3)y-2=0 D.x+eq\r(3)y+2=06.设直线l1:x-2y+1=0与直线l2:mx+y+3=0的交点为A,P,Q分别为l1,l2上任意一点,M为PQ的中点,若|AM|=eq\f(1,2)|PQ|,则m的值为()A.2B.-2C.3D.-37.(多选)已知直线l过点P(1,2),且点A(2,3),B(4,-5)到直线l的距离相等,则l的方程可能是()A.4x+y-6=0 B.x+4y-6=0C.3x+2y-7=0 D.2x+3y-7=08.(多选)设直线l1:y=px+q,l2:y=kx+b,则下列说法正确的是()A.直线l1或l2可以表示平面直角坐标系内任意一条直线B.l1与l2至多有无穷多个交点C.l1∥l2的充要条件是p=k且q≠bD.记l1与l2的交点为M,则y-px-q+λ(y-kx-b)=0可表示过点M的所有直线9.过直线3x-y+5=0与2x-y+6=0的交点,且垂直于直线x-2y+1=0的直线方程是________.10.已知直线l1:2x+y+1=0和直线l2:x+ay+3=0,若l1⊥l2,则实数a的值为________;若l1∥l2,则l1与l2之间的距离为________.11.点P(2,7)关于直线x+y+1=0的对称点的坐标为________.12.已知两直线l1:x-2y+4=0,l2:4x+3y+5=0.若直线l3:ax+2y-6=0与l1,l2不能构成三角形,则实数a=________.13.(多选)已知两条直线l1,l2的方程分别为3x+4y+12=0与ax+8y-11=0,下列结论正确的是()A.若l1∥l2,则a=6B.若l1∥l2,则两条平行直线之间的距离为eq\f(7,4)C.若l1⊥l2,则a=eq\f(32,3)D.若a≠6,则直线l1,l2一定相交14.设△ABC的一个顶点是A(-3,1),∠B,∠C的角平分线方程分别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年消防设施检测与评估服务合同5篇
- 2025年新能源项目承包借款合作协议书2篇
- 二零二五版门窗行业节能减排技术与产品研发合同4篇
- 长飞光纤光缆课程设计
- 银行账户管理java课程设计
- 2025年度智慧安防个人工程承包合同范本4篇
- 二零二五年度智慧生活门面商铺租赁合同2篇
- 2025年消防安全技术服务与消防设备采购安装合同3篇
- 2024年烟花爆竹经营单位主要负责人考试题库附答案 (一)
- 2024年用电监察员(中级)职业鉴定理论考试题库(含答案)
- 狮子王影视鉴赏
- 一年级数学加减法口算题每日一练(25套打印版)
- 2024年甘肃省武威市、嘉峪关市、临夏州中考英语真题
- DL-T573-2021电力变压器检修导则
- 绘本《图书馆狮子》原文
- 安全使用公共WiFi网络的方法
- 2023年管理学原理考试题库附答案
- 【可行性报告】2023年电动自行车相关项目可行性研究报告
- 欧洲食品与饮料行业数据与趋势
- 放疗科室规章制度(二篇)
- 中高职贯通培养三二分段(中职阶段)新能源汽车检测与维修专业课程体系
评论
0/150
提交评论