版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽皖东名校第二学期高三第三次模拟考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为()A. B. C. D.2.复数的虚部是()A. B. C. D.3.已知复数z满足,则在复平面上对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)5.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为()A. B. C. D.6.己知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为()A. B.C. D.7.某四棱锥的三视图如图所示,则该四棱锥的表面积为()A.8 B. C. D.8.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=()A. B. C.2 D.﹣29.在三棱锥中,,,则三棱锥外接球的表面积是()A. B. C. D.10.函数与的图象上存在关于直线对称的点,则的取值范围是()A. B. C. D.11.已知等差数列中,若,则此数列中一定为0的是()A. B. C. D.12.设复数满足(为虚数单位),则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.在中,角,,的对边分别为,,.若;且,则周长的范围为__________.14.函数在的零点个数为_________.15.设等比数列的前项和为,若,则数列的公比是.16.在直三棱柱内有一个与其各面都相切的球O1,同时在三棱柱外有一个外接球.若,,,则球的表面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.(1)求曲线的方程;(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.18.(12分)等差数列中,,,分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的组合,并求数列的通项公式;(2)记(1)中您选择的的前项和为,判断是否存在正整数,使得,,成等比数列,若有,请求出的值;若没有,请说明理由.19.(12分)如图,在四棱锥中底面是菱形,,是边长为的正三角形,,为线段的中点.求证:平面平面;是否存在满足的点,使得?若存在,求出的值;若不存在,请说明理由.20.(12分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.(Ⅰ)求椭圆与椭圆的标准方程;(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.21.(12分)已知是圆:的直径,动圆过,两点,且与直线相切.(1)若直线的方程为,求的方程;(2)在轴上是否存在一个定点,使得以为直径的圆恰好与轴相切?若存在,求出点的坐标;若不存在,请说明理由.22.(10分)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.【详解】由于,函数最高点与最低点的高度差为,所以函数的半个周期,所以,又,,则有,可得,所以,将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数,所以的最小值为1,故选:B.该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.2.C【解析】因为,所以的虚部是,故选C.3.A【解析】
设,由得:,由复数相等可得的值,进而求出,即可得解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.4.C【解析】
先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.5.B【解析】
由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【详解】如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和.故选:B此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.6.A【解析】
根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.【详解】依题意如图所示:取的中点,则是等腰梯形外接圆的圆心,取是的外心,作平面平面,则是四棱锥的外接球球心,且,设四棱锥的外接球半径为,则,而,所以,故选:A.本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.7.D【解析】
根据三视图还原几何体为四棱锥,即可求出几何体的表面积.【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.8.D【解析】
化简z=(1+2i)(1+ai)=,再根据z∈R求解.【详解】因为z=(1+2i)(1+ai)=,又因为z∈R,所以,解得a=-2.故选:D本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.9.B【解析】
取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【详解】取的中点,连接、,由和都是正三角形,得,,则,则,由勾股定理的逆定理,得.设球心为,和的中心分别为、.由球的性质可知:平面,平面,又,由勾股定理得.所以外接球半径为.所以外接球的表面积为.故选:B.本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.10.C【解析】
由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件.故选:C.本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题.11.A【解析】
将已知条件转化为的形式,由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A本小题主要考查等差数列的基本量计算,属于基础题.12.A【解析】
由复数的除法运算可整理得到,由此得到对应的点的坐标,从而确定所处象限.【详解】由得:,对应的点的坐标为,位于第一象限.故选:.本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
先求角,再用余弦定理找到边的关系,再用基本不等式求的范围即可.【详解】解:所以三角形周长故答案为:考查正余弦定理、基本不等式的应用以及三条线段构成三角形的条件;基础题.14.1【解析】
本问题转化为曲线交点个数问题,在同一直角坐标系内,画出函数的图象,利用数形结合思想进行求解即可.【详解】问题函数在的零点个数,可以转化为曲线交点个数问题.在同一直角坐标系内,画出函数的图象,如下图所示:由图象可知:当时,两个函数只有一个交点.故答案为:1本题考查了求函数的零点个数问题,考查了转化思想和数形结合思想.15..【解析】
当q=1时,.当时,,所以.16.【解析】
先求出球O1的半径,再求出球的半径,即得球的表面积.【详解】解:,,,,设球O1的半径为,由题得,所以棱柱的侧棱为.由题得棱柱外接球的直径为,所以外接球的半径为,所以球的表面积为.故答案为:本题主要考查几何体的内切球和外接球问题,考查球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)是定值,.【解析】
(1)设出M的坐标为,采用直接法求曲线的方程;(2)设AB的方程为,,,,求出AT方程,联立直线方程得D点的坐标,同理可得E点的坐标,最后利用向量数量积算即可.【详解】(1)设动点M的坐标为,由知∥,又在直线上,所以P点坐标为,又,点为的中点,所以,,,由得,即;(2)设直线AB的方程为,代入得,设,,则,,设,则,所以AT的直线方程为即,令,则,所以D点的坐标为,同理E点的坐标为,于是,,所以,从而,所以是定值.本题考查了直接法求抛物线的轨迹方程、直线与抛物线位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.18.(1)见解析,或;(2)存在,.【解析】
(1)满足题意有两种组合:①,,,②,,,分别计算即可;(2)由(1)分别讨论两种情况,假设存在正整数,使得,,成等比数列,即,解方程是否存在正整数解即可.【详解】(1)由题意可知:有两种组合满足条件:①,,,此时等差数列,,,所以其通项公式为.②,,,此时等差数列,,,所以其通项公式为.(2)若选择①,.则.若,,成等比数列,则,即,整理,得,即,此方程无正整数解,故不存在正整数,使,,成等比数列.若选则②,,则,若,,成等比数列,则,即,整理得,因为为正整数,所以.故存在正整数,使,,成等比数列.本题考查等差数列的通项公式及前n项和,涉及到等比数列的性质,是一道中档题.19.证明见解析;2.【解析】
利用面面垂直的判定定理证明即可;由,知,所以可得出,因此,的充要条件是,继而得出的值.【详解】解:证明:因为是正三角形,为线段的中点,所以.因为是菱形,所以.因为,所以是正三角形,所以,而,所以平面.又,所以平面.因为平面,所以平面平面.由,知.所以,,.因此,的充要条件是,所以,.即存在满足的点,使得,此时.本题主要考查平面与平面垂直的判定、三棱锥的体积等基础知识;考查空间想象能力、运算求解能力、推理论证能力和创新意识;考查化归与转化、函数与方程等数学思想,属于难题.20.(1),(2)【解析】分析:(1)根据题的条件,得到对应的椭圆的上顶点,即可以求得椭圆中相应的参数,结合椭圆的离心率的大小,求得相应的参数,从而求得椭圆的方程;(2)设出一条直线的方程,与椭圆的方程联立,消元,利用求根公式求得对应点的坐标,进一步求得向量的坐标,将S表示为关于k的函数关系,从眼角函数的角度去求最值,从而求得结果.详解:(Ⅰ)依题意得对:,,得:;同理:.(Ⅱ)设直线的斜率分别为,则MA:,与椭圆方程联立得:,得,得,,所以同理可得.所以,从而可以求得因为,所以,不妨设,所以当最大时,,此时两直线MA,MB斜率的比值.点睛:该题考查的是有关椭圆与直线的综合题,在解题的过程中,注意椭圆的对称性,以及其特殊性,与y轴的交点即为椭圆的上顶点,结合椭圆焦点所在轴,得到相应的参数的值,再者就是应用离心率的大小找参数之间的关系,在研究直线与椭圆相交的问题时,首先设出直线的方程,与椭圆的方程联立,求得结果,注意从函数的角度研究问题.21.(1)或.(2)存在,;【解析】
(1)根据动圆过,两点,可得圆心在的垂直平分线上,由直线的方程为,可知在直线上;设,由动圆与直线相切可得动圆的半径为;又由,及垂径定理即可确定的值,进而确定圆的方程.(2)方法一:设,可得圆的半径为,根据,可得方程为并化简可得的轨迹方程为.设,,可得的中点,进而由两点间距离公式表示出半径,表示出到轴的距离,代入化简即可求得的值,进而确定所过定点的坐标;方法二:同上可得的轨迹方程为,由抛物线定义可求得,表示出线段的中点的坐标,根据到轴的距离可得等量关系,进而确定所过定点的坐标.【详解】(1)因为过点,,所以圆心在的垂直平分线上.由已知的方程为,且,关于于坐标原点对称,所以在直线上,故可设.因为与直线相切,所以的半径为.由已知得,,又,故可得,解得或.故的半径或,所以的方程为或.(2)法一:设,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年互联网广告代理与推广服务合同3篇
- 2024年水利工程项目施工安全责任协议
- 2024年度大型企业智能工厂建设合作协议2篇
- 笨-氯苯课程设计
- 2024年数据中心幕墙劳务分包合同范本3篇
- 2024年版家用太阳能维修保障协议版B版
- 幼儿园菌菇类课程设计
- 石窟研学课程设计
- 疫情课程设计幼儿园
- 2024-2025学年沪教新版九年级(上)化学寒假作业(九)
- HSE基础知识培训
- 服装行业智能工厂整体解决方案
- 提捞采油操作规程
- (完整版)todo,doingsth初中魔鬼训练带答案
- 福建省青少年科技教育协会章程
- 防止返贫监测工作开展情况总结范文
- 2015年度设备预防性维护计划表
- 浅谈离子交换树脂在精制糖行业中的应用
- 某物业管理有限公司人员招聘入职流程图
- 设备研发项目进度表
- 地下车库建筑结构设计土木工程毕业设计
评论
0/150
提交评论