版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.2成对数据的统计分析【题型解读】【题型一成对数据的相关性】1.(2023·全国·高三专题练习)通过抽样调研发现,当地第三季度的医院心脑血管疾病的人数和便利店购买冷饮的人数的相关系数很高,甲认为这是巧合,两者其实没有关系:乙认为冷饮的某种摄入成分导致了疾病;丙认为病人对冷饮会有特别需求:丁认为两者的相关关系是存在的,但不能视为因果,请判断哪位成员的意见最可能成立(
)A.甲 B.乙 C.丙 D.丁2.(2023·陕西·西北工业大学附属中学高三阶段练习)甲、乙、丙、丁四位同学各自对两变量的线性相关性做试验,分别求得样本相关系数,如下表:甲乙丙丁则试验结果中两变量有更强线性相关性的是(
)A.甲 B.乙 C.丙 D.丁3.(2023·青岛高三月考)对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图如图1,对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图如图2.由这两个散点图可以判断()图1图2A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关4.(2023·济南高三期末)(多选)下列选项中正确的是()A.经验回归分析中,R2的值越大,说明残差平方和越小B.若一组观测数据(x1,y1),(x2,y2),…,(xn,yn)满足yi=bxi+a+ei(i=1,2,…,n),若ei恒为0,则R2=1C.经验回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法D.画残差图时,纵坐标为残差,横坐标一定是编号【题型二相关系数求解】1.(2023·四川·成都七中高三阶段练习)新冠疫情期间,口罩的消耗量日益增加,某药店出于口罩进货量的考虑,连续9天统计了第天的口罩的销售量(百件),得到的数据如下:,.参考公式:相关系数;对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为(1)若用线性回归模型拟合y与x之间的关系,求该回归直线的方程;(2)统计学家甲认为用(1)中的线性回归模型(下面简称模型1)进行拟合,不够精确,于是尝试使用非线性模型(下面简称模型2)得到与之间的关系,且模型2的相关系数,试通过计算说明模型1,2中,哪一个模型的拟合效果更好.2.(2023·黑龙江·佳木斯一中三模)共享汽车,是指许多人合用一辆车,即开车人对车辆只有使用权,而没有所有权,有点类似于在租车行业里的短时间的租车.它手续简便,打个电话或通过网上就可以预约订车.某市为了了解不同年龄的人对共享汽车的使用体验,随机选取了100名使用共享汽车的体验者,让他们根据体验效果进行评分.附:回归直线的斜率相关系数独立性检验中的,其中.临界值表:0.0500.0100.0013.8416.63510.828(1)设消费者的年龄为x,对共享汽车的体验评分为y.若根据统计数据,用最小二乘法得到y关于x的线性回归方程为,且年龄x的方差为,评分y的方差为.求y与x的相关系数r,并据此判断对共享汽车使用体验的评分与年龄的相关性强弱(当时,认为相关性强,否则认为相关性弱).(2)现将100名消费者的年龄划分为“青年”和“中老年”,评分划分为“好评”和“差评”,整理得到如下数据,请将列联表补充完整并判断是否有99.9%的把握认为对共享汽车的评价与年龄有关.好评差评合计青年16中老年12合计44100【题型三线性回归方程】1.(2023·全国高三专题练习)某工厂的每月各项开支与毛利润(单位:万元)之间有如下关系,与的线性回归方程,则()245683040605070A.17.5 B.17 C.15 D.15.52.(2023·广东深圳市·高三二模)对于数据组,如果由线性回归方程得到的对应于自变量的估计值是,那么将称为相应于点的残差.某工厂为研究某种产品产量(吨)与所需某种原材料吨)的相关性,在生产过程中收集4组对应数据如下表所示:34562.534根据表中数据,得出关于的线性回归方程为,据此计算出样本点处的残差为-0.15,则表中的值为()A.3.3 B.4.5 C.5 D.5.53.(2023·全国·高三专题练习)西部某深度贫困村,从2014—2019年的人均纯收入(单位:千元)情况如下表,时间变量从2014-2019年的值依次为1,2,……6.2014—2019年的人均纯收入情况表:年份201420152016201720182019人均纯收入(千元)2.63.03.63.94.45.1(1)在图中画出表中数据的散点图,根据散点图,是否可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)建立关于的回归方程(保留两位小数),预测该村2020年的人均纯收入为多少?附注:参考数据:,,,,.参考公式:相关系数,回归方程中斜率和截距的最小二乘法估计公式分别为:,.4.(2023·全国·高三专题练习)《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》,这是21世纪以来第18个指导“三农”工作的中央一号文件.文件指出,民族要复兴,乡村必振兴.为助力乡村振兴,某电商平台为某地的农副特色产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:单价(元/件)88.28.48.68.89销量(万件)908483807568附:参考公式:回归方程,其中,.参考数据:,.(1)(i)根据以上数据,求关于的线性回归方程;(ii)若该产品成本是7元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润.(2)为了解该产品的价格是否合理,在试销平台上购买了该产品的顾客中随机抽了400人,阅读“购买后的评价”得知:对价格满意的有300人,基本满意的有50人,不满意的有50人.为进一步了解顾客对该产品价格满意度形成的原因,在购买该产品的顾客中随机抽取4人进行电话回访,记抽取的4人中对价格满意的人数为随机变量,求随机变量的分布列和数学期望.(视频率为相应事件发生的概率)【题型四非线性回归方程】1.(2023·浙江高三专题练习)数据显示,中国在线直播用户规模及在线直播购物规模近几年都保持高速增长态势,下表为2017-2021年中国在线直播用户规模(单位:亿人),其中2017年-2021年对应的代码依次为1-5.年份代码x12345市场规模y3.984.565.045.866.36(1)由上表数据可知,可用函数模型拟合y与x的关系,请建立y关于x的回归方程(,的值精确到0.01);(2)已知中国在线直播购物用户选择在品牌官方直播间购物的概率为p,现从中国在线直播购物用户中随机抽取4人,记这4人中选择在品牌官方直播间购物的人数为X,若,求X的分布列与期望.参考数据:,,,其中.参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计公式分别为,.2.(2023·四川成都·高三月考)年月底,为严防新型冠状病毒疫情扩散,有效切断病毒传播途径,坚决遏制疫情蔓延势头,确保人民群众生命安全和身体健康,多地相继做出了封城决定.某地在月日至日累计确诊人数如下表:日期(月)日日日日日日日人数(人)由上述表格得到如散点图(月日为封城第一天).(1)根据散点图判断与(,均为大于的常数)哪一个适宜作为累计确诊人数与封城后的天数的回归方程类型(给出判断即可,不必说明理由);并根据上表中的数据求出回归方程;(2)随着更多的医护人员投入疫情的研究,月日武汉影像科医生提出存在大量核酸检测呈阴性(阳性则确诊),但观其肺片具有明显病变,这一提议引起了广泛的关注,月日武汉疾控中心接收了份血液样本,假设每份样本的检验结果是阳性还是阴性都是相互独立的,且每份样本是阳性样本的概率为,核酸试剂能把阳性样本检测出阳性结果的概率是(核酸检测存在阳性样本检测不出来的情况,但不会把阴性检测呈阳性),求这份样本中检测呈阳性的份数的期望.参考数据:其中,,参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计公式分别为,.3.(2023·四川成都·高三月考)如图是某小区2020年1月至2021年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1~13分别对应2020年1月~2021年1月).根据散点图选择和两个模型进行拟合,经过数据处理得到两个回归方程分别为和,并得到以下一些统计量的值:残差平方和总偏差平方和(1)请利用相关指数判断哪个模型的拟合效果更好;(2)估计该小区2021年6月份的二手房均价.(精确到万元/平方米)参考数据:,,,,,,,.参考公式:相关指数.4.(2023·山东青岛·二模)“十四五”是我国全面建成小康社会、实现第一个百年奋斗目标之后,乘势而上开启全面建设社会主现代化国家新征程、向第二个百年奋斗目标进军的第一个五年,实施时间为2021年到2025年.某企业为响应国家号召,汇聚科研力量,加强科技创新,准备加大研发资金投入,为了解年研发资金投入额(单位:亿元)对年盈利额(单位:亿元)的影响,通过对“十二五”和“十三五”规划发展10年期间年研发资金投入额和年盈利额数据进行分析,建立了两个函数模型:;,其中,,,均为常数,为自然对数的底数令,经计算得如下数据:,,,,,,,,,,问:(1)请从相关系数的角度,分析哪一个模型拟合度更好?(2)根据(1)的选择及表中数据,建立,关于的回归方程(系数精确到0.01)(3)若希望2021年盈利额y为500亿元,请预测2021年的研发资金投入额为多少亿元?(结果精确到0.01)附:①相关系数r=回归直线中:,参考数据:,.【题型五独立性检验】1.(2023·浙江高三专题练习)为了丰富教职工业余文化生活,某校计划在假期组织70名老师外出旅游,并给出了两种方案(方案一和方案二),每位老师均选择且只选择一种方案,其中有50%的男老师选择方案一,有75%的女老师选择方案二,且选择方案一的老师中女老师占40%,则参照附表,得到的正确结论是()附:()0.100.050.0252.7063.8415.024,.A.在犯错误的概率不超过2.5%的前提下,认为“选择方案与性别有关”B.在犯错误的概率不超过2.5%的前提下,认为“选择方案与性别无关”C.有95%以上的把握认为“选择方案与性别有关”D.有95%以上的把握认为“选择方案与性别无关”2.(2023·四川成都·高三月考)通过随机询问某中学110名中学生是否爱好跳绳,得到如下列联表:跳绳性别合计男女爱好402060不爱好203050合计6050110已知,0.050.010.0013.8416.63510.828则以下结论正确的是()A.根据小概率值的独立性检验,爱好跳绳与性别无关B.根据小概率值的独立性检验,爱好跳绳与性别无关,这个结论犯错误的概率不超过0.001C.根据小概率值的独立性检验,有99%以上的把握认为“爱好跳绳与性别无关”D.根据小概率值的独立性检验,在犯错误的概率不超过1%的前提下,认为“爱好跳绳与性别无关”3.(2023·四川成都·高三月考)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了100名学生的问卷成绩(单位:分)进行统计,将数据按照分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99.5%的把握认为“文科方向”与性别有关?理科方向文科方向总计男40女45总计100(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取4次,记被抽取的4人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.参考公式:,其中.参考临界值:4.(2023·山东青岛·二模)武汉热干面既是中国四大名面之一,也是湖北武汉最出名的小吃之一.某热干面店铺连续10天的销售情况如下(单位:份):天数12345678910套餐一12010014014012070150120110130套餐二809090605090708090100(1)分别求套餐一、套餐二的均值、方差,并判断两种套餐销售的稳定情况;(2)假定在连续10天中每位顾客只购买了一份,根据图表内容填写下列列联表,并据此判断能否有95%的把握认定顾客性别与套餐选择有关?顾客套餐套餐一套餐二合计男顾客400女顾客500合计附:0.100.050.0250.0102.7063.8415.0246.6359.2成对数据的统计分析【题型解读】【题型一成对数据的相关性】1.(2023·全国·高三专题练习)通过抽样调研发现,当地第三季度的医院心脑血管疾病的人数和便利店购买冷饮的人数的相关系数很高,甲认为这是巧合,两者其实没有关系:乙认为冷饮的某种摄入成分导致了疾病;丙认为病人对冷饮会有特别需求:丁认为两者的相关关系是存在的,但不能视为因果,请判断哪位成员的意见最可能成立(
)A.甲 B.乙 C.丙 D.丁答案:D【解析】当地第三季度的医院心脑血管疾病的人数和便利店购买冷饮的人数的相关系数很高,但相关关系是一种非确定性关系,相关关系不等于因果关系,丁的意见最可能成立.故选:D.2.(2023·陕西·西北工业大学附属中学高三阶段练习)甲、乙、丙、丁四位同学各自对两变量的线性相关性做试验,分别求得样本相关系数,如下表:甲乙丙丁则试验结果中两变量有更强线性相关性的是(
)A.甲 B.乙 C.丙 D.丁答案:B【解析】由已知,乙的相关系数的绝对值为,是四人中最大的,因此乙同学有更强的相关性.故选:B.3.(2023·青岛高三月考)对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图如图1,对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图如图2.由这两个散点图可以判断()图1图2A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关答案:C【解析】由题图可得两组数据均线性相关,且图1的经验回归直线的斜率为负,图2的经验回归直线的斜率为正,则由散点图可判断变量x与y负相关,u与v正相关.4.(2023·济南高三期末)(多选)下列选项中正确的是()A.经验回归分析中,R2的值越大,说明残差平方和越小B.若一组观测数据(x1,y1),(x2,y2),…,(xn,yn)满足yi=bxi+a+ei(i=1,2,…,n),若ei恒为0,则R2=1C.经验回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法D.画残差图时,纵坐标为残差,横坐标一定是编号答案:ABC【解析】对于A,经验回归分析中,R2的值越大,说明模型的拟合效果越好,则残差平方和越小,A对;对于B,若一组观测数据(x1,y1),(x2,y2),…,(xn,yn)满足yi=bxi+a+ei(i=1,2,…,n),若ei恒为0,则R2=1,B对;对于C,经验回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,C对;对于D,残差图中横坐标可以是样本编号,也可以是身高数据,还可以是体重的估计值等,D错.【题型二相关系数求解】1.(2023·四川·成都七中高三阶段练习)新冠疫情期间,口罩的消耗量日益增加,某药店出于口罩进货量的考虑,连续9天统计了第天的口罩的销售量(百件),得到的数据如下:,.参考公式:相关系数;对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为(1)若用线性回归模型拟合y与x之间的关系,求该回归直线的方程;(2)统计学家甲认为用(1)中的线性回归模型(下面简称模型1)进行拟合,不够精确,于是尝试使用非线性模型(下面简称模型2)得到与之间的关系,且模型2的相关系数,试通过计算说明模型1,2中,哪一个模型的拟合效果更好.答案:见解析【解析】(1)解:由题意得,,,故所求回归直线的方程为;(2)解:模型1的相关系数故模型2的拟合性更好.2.(2023·黑龙江·佳木斯一中三模)共享汽车,是指许多人合用一辆车,即开车人对车辆只有使用权,而没有所有权,有点类似于在租车行业里的短时间的租车.它手续简便,打个电话或通过网上就可以预约订车.某市为了了解不同年龄的人对共享汽车的使用体验,随机选取了100名使用共享汽车的体验者,让他们根据体验效果进行评分.附:回归直线的斜率相关系数独立性检验中的,其中.临界值表:0.0500.0100.0013.8416.63510.828(1)设消费者的年龄为x,对共享汽车的体验评分为y.若根据统计数据,用最小二乘法得到y关于x的线性回归方程为,且年龄x的方差为,评分y的方差为.求y与x的相关系数r,并据此判断对共享汽车使用体验的评分与年龄的相关性强弱(当时,认为相关性强,否则认为相关性弱).(2)现将100名消费者的年龄划分为“青年”和“中老年”,评分划分为“好评”和“差评”,整理得到如下数据,请将列联表补充完整并判断是否有99.9%的把握认为对共享汽车的评价与年龄有关.好评差评合计青年16中老年12合计44100答案:见解析【解析】(1)解:因为,所以,因为,所以,因为,所以,所以相关系数,因为,所以可以判断对共享汽车使用体验的评分与年龄的相关性很强.(2)解:根据题意可得列联表如下:好评差评合计青年163248中老年401252合计5644100因为,所以有99.9%的把握认为对共享汽车的评价与年龄有关.【题型三线性回归方程】1.(2023·全国高三专题练习)某工厂的每月各项开支与毛利润(单位:万元)之间有如下关系,与的线性回归方程,则()245683040605070A.17.5 B.17 C.15 D.15.5答案:A【解析】由题意,根据表中的数据,可得,,即样本中心为,代入与的线性回归方程为,解得.故选:A.2.(2023·广东深圳市·高三二模)对于数据组,如果由线性回归方程得到的对应于自变量的估计值是,那么将称为相应于点的残差.某工厂为研究某种产品产量(吨)与所需某种原材料吨)的相关性,在生产过程中收集4组对应数据如下表所示:34562.534根据表中数据,得出关于的线性回归方程为,据此计算出样本点处的残差为-0.15,则表中的值为()A.3.3 B.4.5 C.5 D.5.5答案:B【解析】由题意可知,在样本(4,3)处的残差-0.15,则,即,解得,即,又,且线性方程过样本中心点(,),则,则,解得.故答案为:B3.(2023·全国·高三专题练习)西部某深度贫困村,从2014—2019年的人均纯收入(单位:千元)情况如下表,时间变量从2014-2019年的值依次为1,2,……6.2014—2019年的人均纯收入情况表:年份201420152016201720182019人均纯收入(千元)2.63.03.63.94.45.1(1)在图中画出表中数据的散点图,根据散点图,是否可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)建立关于的回归方程(保留两位小数),预测该村2020年的人均纯收入为多少?附注:参考数据:,,,,.参考公式:相关系数,回归方程中斜率和截距的最小二乘法估计公式分别为:,.答案:(1)散点图见解析;可以用线性回归方程拟合与的关系;说明见解析;(2);该村2020年人均收入约为5450元左右.【解析】(1)作出散点图如图:由散点图可知各点大致分布在一条直线附近,,因为与的相关系数约为0.99,说明与的相关程度是很高的,所以可以用线性回归方程拟合与的关系.(2),所以回归直线方程,,即该村2020年人均收入约为5450元左右.4.(2023·全国·高三专题练习)《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》,这是21世纪以来第18个指导“三农”工作的中央一号文件.文件指出,民族要复兴,乡村必振兴.为助力乡村振兴,某电商平台为某地的农副特色产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:单价(元/件)88.28.48.68.89销量(万件)908483807568附:参考公式:回归方程,其中,.参考数据:,.(1)(i)根据以上数据,求关于的线性回归方程;(ii)若该产品成本是7元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润.(2)为了解该产品的价格是否合理,在试销平台上购买了该产品的顾客中随机抽了400人,阅读“购买后的评价”得知:对价格满意的有300人,基本满意的有50人,不满意的有50人.为进一步了解顾客对该产品价格满意度形成的原因,在购买该产品的顾客中随机抽取4人进行电话回访,记抽取的4人中对价格满意的人数为随机变量,求随机变量的分布列和数学期望.(视频率为相应事件发生的概率)答案:见解析【解析】(1)解:i),,∴.∴,∴回归直线方程为.(ii)设工厂获得的利润为万元,则,∴该产品的单价定为9.75元时,工厂获得利润最大,最大利润为151.25万元(2)解:由题设可知对价格满意的频率为,基本满意和不满意的频率为,随机变量,,随机变量的分布列如下表:01234随机变量的数学期望为【题型四非线性回归方程】1.(2023·浙江高三专题练习)数据显示,中国在线直播用户规模及在线直播购物规模近几年都保持高速增长态势,下表为2017-2021年中国在线直播用户规模(单位:亿人),其中2017年-2021年对应的代码依次为1-5.年份代码x12345市场规模y3.984.565.045.866.36(1)由上表数据可知,可用函数模型拟合y与x的关系,请建立y关于x的回归方程(,的值精确到0.01);(2)已知中国在线直播购物用户选择在品牌官方直播间购物的概率为p,现从中国在线直播购物用户中随机抽取4人,记这4人中选择在品牌官方直播间购物的人数为X,若,求X的分布列与期望.参考数据:,,,其中.参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计公式分别为,.答案:(1)(2)分布列见解析;期望为【解析】(1)解:设,则,因为,,,所以.把代入,得.即关于的回归方程为.(2)解:由题意知,,,由得所以,的取值依次为0,1,2,3,4,,,,,,所以X的分布列为X01234P2.(2023·四川成都·高三月考)年月底,为严防新型冠状病毒疫情扩散,有效切断病毒传播途径,坚决遏制疫情蔓延势头,确保人民群众生命安全和身体健康,多地相继做出了封城决定.某地在月日至日累计确诊人数如下表:日期(月)日日日日日日日人数(人)由上述表格得到如散点图(月日为封城第一天).(1)根据散点图判断与(,均为大于的常数)哪一个适宜作为累计确诊人数与封城后的天数的回归方程类型(给出判断即可,不必说明理由);并根据上表中的数据求出回归方程;(2)随着更多的医护人员投入疫情的研究,月日武汉影像科医生提出存在大量核酸检测呈阴性(阳性则确诊),但观其肺片具有明显病变,这一提议引起了广泛的关注,月日武汉疾控中心接收了份血液样本,假设每份样本的检验结果是阳性还是阴性都是相互独立的,且每份样本是阳性样本的概率为,核酸试剂能把阳性样本检测出阳性结果的概率是(核酸检测存在阳性样本检测不出来的情况,但不会把阴性检测呈阳性),求这份样本中检测呈阳性的份数的期望.参考数据:其中,,参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计公式分别为,.答案:(1)选择,关于的回归方程为;(2)期望为人.【解析】(1)由散点图可知选择,由两边同时取常用对数得,设,.计算,,,,把样本中心点代入得.,关于的回归方程为;(2)这份样本中检测呈阳性的份数为,则每份检测出阳性的概率,由题意可知,(人),故这份样本中检测呈阳性份数的期望为人.3.(2023·四川成都·高三月考)如图是某小区2020年1月至2021年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1~13分别对应2020年1月~2021年1月).根据散点图选择和两个模型进行拟合,经过数据处理得到两个回归方程分别为和,并得到以下一些统计量的值:残差平方和总偏差平方和(1)请利用相关指数判断哪个模型的拟合效果更好;(2)估计该小区2021年6月份的二手房均价.(精确到万元/平方米)参考数据:,,,,,,,.参考公式:相关指数.答案:(1)模型;(2)(万元/平方米).【解析】(1)设模型和的相关指数分别为和,则,.因为,所以.所以模型的拟合效果更好.(2)由(1)知,模型的拟合效果更好,利用该模型预测可得,这个小区2021年6月份的在售二手房均价为:(万元/平方米).4.(2023·山东青岛·二模)“十四五”是我国全面建成小康社会、实现第一个百年奋斗目标之后,乘势而上开启全面建设社会主现代化国家新征程、向第二个百年奋斗目标进军的第一个五年,实施时间为2021年到2025年.某企业为响应国家号召,汇聚科研力量,加强科技创新,准备加大研发资金投入,为了解年研发资金投入额(单位:亿元)对年盈利额(单位:亿元)的影响,通过对“十二五”和“十三五”规划发展10年期间年研发资金投入额和年盈利额数据进行分析,建立了两个函数模型:;,其中,,,均为常数,为自然对数的底数令,经计算得如下数据:,,,,,,,,,,问:(1)请从相关系数的角度,分析哪一个模型拟合度更好?(2)根据(1)的选择及表中数据,建立,关于的回归方程(系数精确到0.01)(3)若希望2021年盈利额y为500亿元,请预测2021年的研发资金投入额为多少亿元?(结果精确到0.01)附:①相关系数r=回归直线中:,参考数据:,.答案:(1)模型的拟合程度更好;(2);(3)亿元.【解析】(1)为了判断两个函数模型:;,拟合程度,只需要判断两个函数模型,拟合程度即可.设和的相关系数为,和的相关系数为,由题意,,显然,因此从相关系数的角度,模型的拟合程度更好.(2)先建立关于的线性回归方程,由得,,即,,,所以关于的线性回归方程为,即,所求回归方程为:,(3)若2021年盈利额为500亿元,即为,,,解得:,所以2021年的研发资金投入量约为亿元.【题型五独立性检验】1.(2023·浙江高三专题练习)为了丰富教职工业余文化生活,某校计划在假期组织70名老师外出旅游,并给出了两种方案(方案一和方案二),每位老师均选择且只选择一种方案,其中有50%的男老师选择方案一,有75%的女老师选择方案二,且选择方案一的老师中女老师占40%,则参照附表,得到的正确结论是()附:()0.100.050.0252.7063.8415.024,.A.在犯错误的概率不超过2.5%的前提下,认为“选择方案与性别有关”B.在犯错误的概率不超过2.5%的前提下,认为“选择方案与性别无关”C.有95%以上的把握认为“选择方案与性别有关”D.有95%以上的把握认为“选择方案与性别无关”答案:C【解析】设该校男老师的人数为,女老师的人数为,则可得如下表格:方案一方案二男老师女老师由题意,可得,可得,,则,但,所以无97.5%以上有95%以上的把握认为“选择方案与性别有关”.故选:C.2.(2023·四川成都·高三月考)通过随机询问某中学110名中学生是否爱好跳绳,得到如下列联表:跳绳性别合计男女爱好402060不爱好203050合计6050110已知,0.050.010.0013.8416.63510.828则以下结论正确的是()A.根据小概率值的独立性检验,爱好跳绳与性别无关B.根据小概率值的独立性检验,爱好跳绳与性别无关,这个结论犯错误的概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 政教处安全工作职责(2篇)
- 百度物业管理服务合同模板
- 工地防火紧急预案(4篇)
- 水电维修安装合同范例
- 二零二四年度轮胎企业市场开拓与品牌推广合同
- 二零二四年度DDD股权投资项目管理与运营合同
- 2024年“三好一满意”活动第二阶段总结标准范文(2篇)
- 二零二四年度无人机测绘服务合同
- 2024年度标准化厂房建设质量保证合同:施工单位与建设方之间的质量保证协议
- 2024贷款公司借款合同版范文
- 企业人才库建设课件
- 我是一只有个性的狼教学设计及课后反思
- 积极心理暗示课件
- 2022年浙江公务员考试申论真题及答案(A卷)
- 绽放校园文明之花创建文明校园文明礼仪主题班会课件
- 二年级下册音乐教案- 欣赏《调皮的小闹钟》 人教版
- 关于增加体检科的可行性报告
- 油藏工程课程设计
- 公路定向钻穿越应急预案
- 幼儿园安全管理网络图
- 年度考核结果证明
评论
0/150
提交评论