版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§9.4列联表与独立性检验知识梳理1.分类变量为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示.2.列联表与独立性检验(1)关于分类变量X和Y的抽样数据的2×2列联表:XY合计Y=0Y=1X=0aba+bX=1cdc+d合计a+cb+dn=a+b+c+d(2)计算随机变量χ2=eq\f(nad-bc2,a+bc+da+cb+d),利用χ2的取值推断分类变量X和Y是否独立的方法称为χ2独立性检验.如表为5个常用的小概率值和相应的临界值.α0.10.050.010.0050.001xα2.7063.8416.6357.87910.828思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)2×2列联表中的数据是两个分类变量的频数.()(2)事件A和B的独立性检验无关,即两个事件互不影响.()(3)χ2的大小是判断事件A和B是否相关的统计量.()(4)在2×2列联表中,若|ad-bc|越小,则说明两个分类变量之间关系越强.()教材改编题1.某机构为调查网游爱好者是否有性别差异,通过调研数据统计:在500名男生中有200名爱玩网游,在400名女生中有50名爱玩网游.若要确定网游爱好是否与性别有关时,用下列最适合的统计方法是()A.均值 B.方差C.独立性检验 D.回归分析2.如表是2×2列联表,则表中a,b的值分别为()y1y2合计x1a835x2113445合计b4280A.27,38 B.28,38C.27,37 D.28,373.已知P(χ2≥6.635)=0.01,P(χ2≥10.828)=0.001.在检验喜欢某项体育运动与性别是否有关的过程中,某研究员搜集数据并计算得到χ2=7.235,则根据小概率值α=________的χ2独立性检验,分析喜欢该项体育运动与性别有关.题型一列联表与χ2的计算例1(1)为了解某大学的学生是否喜欢体育锻炼,用简单随机抽样方法在校园内调查了120位学生,得到如下2×2列联表:男女合计喜欢ab73不喜欢c25合计74则a-b-c等于()A.7B.8C.9D.10(2)为加强素质教育,使学生各方面全面发展,某学校对学生文化课与体育课的成绩进行了调查统计,结果如表:体育课不及格体育课及格合计文化课及格57221278文化课不及格164359合计73264337在对体育课成绩与文化课成绩进行独立性检验时,根据以上数据可得到χ2的值为()A.1.255 B.38.214C.0.0037 D.2.058思维升华2×2列联表是4行4列,计算时要准确无误,关键是对涉及的变量分清类别.跟踪训练1某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的2×2列联表中,a+b+d=________.会外语不会外语合计男ab20女6d合计1850例2甲、乙两城之间的长途客车均由A和B两家公司运营.为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司在甲、乙两城之间长途客车准点的概率;(2)能否根据小概率值α=0.1的独立性检验,分析甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),n=a+b+c+d.α0.10.050.01xα2.7063.8416.635思维升华独立性检验的一般步骤(1)根据样本数据制成2×2列联表.(2)根据公式χ2=eq\f(nad-bc2,a+bc+da+cb+d)计算.(3)比较χ2与临界值的大小关系,作统计推断.跟踪训练2为了减少自身消费的碳排放,“绿色消费”等绿色生活方式渐成风尚.为获得不同年龄段的人对“绿色消费”意义的认知情况,某地研究机构将“90后与00后”作为A组,将“70后与80后”作为B组,并从A,B两组中各随机选取了100人进行问卷调查,整理数据后获得如下列联表:单位:人年龄段认知情况合计知晓不知晓A组(90后与00后)7525100B组(70后与80后)4555100合计12080200附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),n=a+b+c+d.α0.10.050.010.0050.001xα2.7063.8416.6357.87910.828(1)若从样本内知晓“绿色消费”意义的120人中用比例分配的分层随机抽样方法随机抽取16人,问应在A组、B组中各抽取多少人?(2)能否依据小概率值α=0.001的独立性检验,分析对“绿色消费”意义的认知情况与年龄有关?题型三独立性检验的综合应用例3体育运动是强身健体的重要途径,《中国儿童青少年体育健康促进行动方案(2020-2030)》(下面简称“体育健康促进行动方案”)中明确提出青少年学生每天在校内参与不少于60分钟的中高强度身体活动的要求.随着“体育健康促进行动方案”的发布,体育运动受到各地中小学的高度重视,众多青少年的体质健康得到很大的改善.某中学教师为了了解体育运动对学生的数学成绩的影响情况,现从该中学高三年级的一次月考中随机抽取1000名学生,调查他们平均每天的体育运动情况以及本次月考的数学成绩情况,得到如表数据:数学成绩(分)[30,50)[50,70)[70,90)[90,110)[110,130)[130,150]人数(人)2512535030015050运动达标的人数(人)104514520010743约定:平均每天进行体育运动的时间不少于60分钟的为“运动达标”,数学成绩排在年级前50%以内(含50%)的为“数学成绩达标”.(1)求该中学高三年级本次月考数学成绩的65%分位数;(2)请估计该中学高三年级本次月考数学成绩的平均分(同一组中的数据用该组区间的中点值作代表);(3)请根据已知数据完成下列列联表,并根据小概率值α=0.001的独立性检验,分析“数学成绩达标”是否与“运动达标”相关.数学成绩达标人数数学成绩不达标人数合计运动达标人数运动不达标人数合计附:χ2=eq\f(nad-bc2,a+bc+da+cb+d)(n=a+b+c+d).α0.0100.0050.001xα6.6357.87910.828思维升华独立性检验的考查,往往与概率和抽样统计图等一起考查,这类问题的求解往往按各小题及提问的顺序,一步步进行下去,是比较容易解答的,考查单纯的独立性检验往往用小题的形式,而且χ2的公式一般会在原题中给出.跟踪训练3某网红奶茶品牌公司计划在W市某区开设加盟分店,为了确定在该区开设分店的个数,该公司对该市已开设分店的5个区域的数据作了初步处理后得到下列表格,记x表示在5个区域开设分店的个数,y表示这x个分店的年收入之和.x(个)23456y(十万元)2.5344.56(1)该公司经过初步判断,可用经验回归模型拟合y与x的关系,求y关于x的经验回归方程;(2)如果该公司最终决定在该区选择两个合适的地段各开设一个分店,根据市场调查得到如下统计数据,第一分店每天的顾客平均为30人,其中5人会购买该品牌奶茶,第二分店每天的顾客平均为80人,其中20人会购买该品牌奶茶.依据小概率值α=0.1的独立性检验,分析两个店的顾客下单率有无差异.参考公式:eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,n,x)iyi-n\x\to(x)\x\to(y),\i\su(i=1,n,x)\o\al(2,i)-n\x\to(x)2),eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x);χ2=eq\f(nad-bc2,a+bc+da+cb+d),x0.1=2.706.课时精练1.观察下列各图,其中两个分类变量x,y之间关系最强的是()2.下列关于独立性检验的说法正确的是()A.独立性检验是对两个变量是否具有线性相关关系的一种检验B.独立性检验可以100%确定两个变量之间是否具有某种关系C.利用χ2独立性检验推断吸烟与患肺病的关联中,若有99%的把握认为吸烟与患肺病有关系时,则我们可以说在100个吸烟的人中,有99人患肺病D.对于独立性检验,随机变量χ2的值越小,判定“两变量有关系”犯错误的概率越大3.为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据:药物流感患流感未患流感服用218未服用812下表是χ2独立性检验中几个常用的小概率值和相应的临界值:α0.10.050.010.005xα2.7063.8416.6357.879根据表中数据,计算χ2=eq\f(nad-bc2,a+bc+da+cb+d),若由此认为“该药物预防流感有效果”,则该结论出错的概率不超过()A.0.05B.0.1C.0.01D.0.0054.(多选)为考察一种新型药物预防疾病的效果,某科研小组进行动物实验,收集整理数据后将所得结果填入相应的2×2列联表中,由列联表中的数据计算得χ2≈9.616.参照附表,下列结论正确的是()附表:α0.10.050.010.0050.001xα2.7063.8416.6357.87910.828A.根据小概率值α=0.001的独立性检验,分析认为“药物有效”B.根据小概率值α=0.001的独立性检验,分析认为“药物无效”C.根据小概率值α=0.005的独立性检验,分析认为“药物有效”D.根据小概率值α=0.005的独立性检验,分析认为“药物无效”5.(多选)根据分类变量x与y的观察数据,计算得到χ2=2.974,依据表中给出的χ2独立性检验中的小概率值和相应的临界值,作出下列判断,正确的是()α0.10.050.010.0050.001xα2.7063.8416.6357.87910.828A.根据小概率值α=0.05的独立性检验,分析变量x与y相互独立B.根据小概率值α=0.05的独立性检验,分析变量x与y不相互独立C.变量x与y相互独立,这个结论犯错误的概率不超过0.1D.变量x与y不相互独立,这个结论犯错误的概率不超过0.16.为考查某种营养品对儿童身高增长的影响,选取部分儿童进行试验,根据100个有放回简单随机样本的数据,得到如下列联表,由表可知下列说法正确的是()营养品身高合计有明显增长无明显增长食用a1050未食用b3050合计6040100参考公式:χ2=eq\f(nad-bc2,a+bc+da+cb+d),其中n=a+b+c+d.参考数据:α0.10.050.010.0050.001xα2.7063.8416.6357.87910.828A.a=b=30B.χ2≈12.667C.从样本中随机抽取1名儿童,抽到食用该营养品且身高有明显增长的儿童的概率是eq\f(3,5)D.根据小概率值α=0.001的独立性检验,可以认为该营养品对儿童身高增长有影响7.如表是对于“喜欢运动”与性别是否有关的2×2列联表,依据表中的数据,得到χ2≈________(结果保留到小数点后3位).喜欢运动不喜欢运动合计男402868女51217合计4540858.一项研究同年龄段的男、女生的注意力差别的脑功能实验,其实验数据如表所示:注意力稳定注意力不稳定男生297女生335则χ2=________(精确到小数点后三位),依据概率值α=0.05的独立性检验,该实验________该年龄段的学生在注意力的稳定性上对于性别没有显著差异(填拒绝或支持).9.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)依据小概率值α=0.01的独立性检验能否认为甲机床的产品质量与乙机床的产品质量有差异?附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),n=a+b+c+d.α0.050.010.001xα3.8416.63510.82810.某花圃为提高某品种花苗质量,开展技术创新活动,A,B在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.(1)求图中a的值,并求综合评分的中位数;(2)填写下面的2×2列联表,并根据小概率值α=0.01的独立性检验,分析优质花苗与培育方法是否有关,请说明理由.优质花苗非优质花苗合计甲培育法20乙培育法10合计附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),其中n=a+b+c+d.α0.10.050.010.0050.001xα2.7063.8416.6357.87910.82811.在某病毒疫苗的研发过程中,需要利用基因编辑小鼠进行动物实验.现随机抽取100只基因编辑小鼠对该病毒疫苗进行实验,得到如下2×2列联表(部分数据缺失):被某病毒感染未被某病毒感染合计注射疫苗1050未注射疫苗3050合计30100计算可知,根据小概率值α=________的独立性检验,分析“给基因编辑小鼠注射该种疫苗能起到预防该病毒感染的效果”()附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),n=a+b+c+d.α0.10.050.010.0050.001xα2.7063.8416.6357.87910.828A.0.001 B.0.05C.0.0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届吉林省白山一中高三下学期联考语文试题含解析
- 2025届安徽省宿州市宿城第一中学高三3月份模拟考试英语试题含解析
- 上海市宝山区海滨中学2025届高三第五次模拟考试英语试卷含解析
- 2025届江苏省丹阳市丹阳高级中学高三下学期联考英语试题含解析
- 《电路分析基础》课程教学大纲
- 《公务员制度》课程教学大纲
- 2024年出售旧养牛棚合同范本
- 2024年代耕代种协议书模板范本
- 《餐饮服务与管理》高教版(第二版)5.4中餐宴会服务单元练习卷(解析版)
- 华西护理管理
- 人工智能推动农业现代化发展
- 护士家长进课堂
- 三高中医辨证治疗课件
- 食品检验检测技术专业职业生涯发展
- 抖音矩阵员工培训课件
- wifi模块行业分析
- 小学语文中高年级单元整体教学设计的实践研究(结题报告)
- 2025届高考语文复习:诗歌形象鉴赏之事物形象
- 住房保障社工述职报告
- 高速广告策划方案
- 知识产权维权授权书
评论
0/150
提交评论