版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省怀化市靖州苗族侗族自治县市级名校中考三模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.函数中,x的取值范围是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣22.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.23.下列计算中,正确的是()A.a•3a=4a2 B.2a+3a=5a2C.(ab)3=a3b3 D.7a3÷14a2=2a4.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<15.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.6.计算的值为()A. B.-4 C. D.-27.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)33.544.5人数1132A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.58.下列计算中,正确的是()A. B. C. D.9.下列运算正确的是()A.5ab﹣ab=4 B.a6÷a2=a4C. D.(a2b)3=a5b310.如图,BD∥AC,BE平分∠ABD,交AC于点E,若∠A=40°,则∠1的度数为()A.80° B.70° C.60° D.40°二、填空题(本大题共6个小题,每小题3分,共18分)11.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.12.若n边形的内角和是它的外角和的2倍,则n=.13.点A(a,b)与点B(﹣3,4)关于y轴对称,则a+b的值为_____.14.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分别是BC、AC的中点,则∠EDF等于__________°.15.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为______.16.若一个棱柱有7个面,则它是______棱柱.三、解答题(共8题,共72分)17.(8分)已知,求代数式的值.18.(8分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:甲种乙种丙种进价(元/台)120016002000售价(元/台)142018602280经预算,商场最多支出132000元用于购买这批电冰箱.(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?19.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线解析式并求出点D的坐标;(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当△CPE是等腰三角形时,请直接写出m的值.20.(8分)(1)解方程:.(2)解不等式组:21.(8分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.22.(10分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间(单位:分钟)是关于x的一次函数,其关系如下表:地铁站ABCDEX(千米)891011.513(分钟)1820222528(1)求关于x的函数表达式;李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.23.(12分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.24.如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】要使有意义,所以x+1≥0且x+1≠0,
解得x>-1.
故选B.2、B【解析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【详解】解:∵△ABC绕点A顺时针旋转
60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.3、C【解析】
根据同底数幂的运算法则进行判断即可.【详解】解:A、a•3a=3a2,故原选项计算错误;B、2a+3a=5a,故原选项计算错误;C、(ab)3=a3b3,故原选项计算正确;D、7a3÷14a2=a,故原选项计算错误;故选C.【点睛】本题考点:同底数幂的混合运算.4、A【解析】
根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.【点评】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.5、B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=12•x•x=当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=-6、C【解析】
根据二次根式的运算法则即可求出答案.【详解】原式=-3=-2,故选C.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.7、A【解析】
根据众数和中位数的概念求解.【详解】这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选A.【点睛】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8、D【解析】
根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可.【详解】A、(2a)3=8a3,故本选项错误;B、a3+a2不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选D.【点睛】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键.9、B【解析】
由整数指数幂和分式的运算的法则计算可得答案.【详解】A项,根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;B项,根据“同底数幂相除,底数不变,指数相减”可得:a6÷a2=a4,故B项正确;C项,根据分式的加法法则可得:,故C项错误;D项,根据“积的乘方等于乘方的积”可得:,故D项错误;故本题正确答案为B.【点睛】幂的运算法则:(1)同底数幂的乘法:(m、n都是正整数)(2)幂的乘方:(m、n都是正整数)(3)积的乘方:(n是正整数)(4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)(5)零次幂:(a≠0)(6)负整数次幂:(a≠0,p是正整数).10、B【解析】
根据平行线的性质得到根据BE平分∠ABD,即可求出∠1的度数.【详解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故选B.【点睛】本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】
根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.【详解】△=(﹣8)2﹣4m=0,解得m=1,故答案为:1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.12、6【解析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=613、1【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:∵点与点关于y轴对称,∴故答案为1.【点睛】考查关于轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数.14、【解析】E、F分别是BC、AC的中点.,∠CAB=26°又∠CAD=26°!15、【解析】分析:根据题意可以列出相应的方程组,从而可以解答本题.详解:由题意可得,,故答案为点睛:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.16、5【解析】分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.三、解答题(共8题,共72分)17、12【解析】解:∵,∴.∴.将代数式应用完全平方公式和平方差公式展开后合并同类项,将整体代入求值.18、(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【解析】
(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.【详解】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商场至少购进乙种电冰箱14台;(2)由题意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W随x的增大而减小,∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【点睛】本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.19、(1)y=﹣x2+2x+3,D点坐标为();(2)当m=时,△CDP的面积存在最大值,最大值为;(3)m的值为或或.【解析】
(1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;
(2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;
(3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值.【详解】(1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直线CD的解析式为y=﹣x+3,解方程组,解得或,∴D点坐标为(,);(2)存在.设P(m,﹣m2+2m+3),则E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,当m=时,△CDP的面积存在最大值,最大值为;(3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,综上所述,m的值为或或.【点睛】本题考核知识点:二次函数的综合应用.解题关键点:灵活运用二次函数性质,运用数形结合思想.20、(1)无解;(1)﹣1<x≤1.【解析】
(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】(1)去分母得:1﹣x+1=﹣3x+6,解得:x=1,经检验x=1是增根,分式方程无解;(1),由①得:x>﹣1,由②得:x≤1,则不等式组的解集为﹣1<x≤1.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21、55米【解析】
由题意可知△EDC∽△EBA,△FHC∽△FBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得AC=106米,再由即可求得AB=55米.【详解】∵△EDC∽△EBA,△FHC∽△FBA,,,,即,∴AC=106米,又,∴,∴AB=55米.答:舍利塔的高度AB为55米.【点睛】本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题.22、(1)y1=2x+2;(2)选择在B站出地铁,最短时间为39.5分钟.【解析】
(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2-9x+80,根据二次函数的性质,即可得出最短时间.【详解】(1)设y1=kx+b,将(8,18),(9,20),代入y1=kx+b,得:解得所以y1关于x的函数解析式为y1=2x+2.(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2-11x+78=x2-9x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土石方工程施工合作协议范本
- 砌砖分包商合同模板
- 旅游租车协议书范本
- 蔬菜采购合同的修改记录
- 二手房屋买卖合同范本点评
- 工程劳务分包结算单填写指南
- 鸡苗买卖合同示例
- 国际采购合同条款解析
- 河北工程分包协议样本
- 保健品交易合同
- 9m跨度轻型屋面三角形钢屋架设计说明书
- CA6140拨叉831002课程设计工序卡
- 全国医疗服务价格项目规范(2012年版)
- MATLAB论文基于MATLAB的自动控制系统及案例分析
- 化学元素周期表word版(可打印)
- 车友会活动策划方案PPT
- 英语演讲稿——Healthy Lifestyle
- 法院立案送达地址确认书
- 电气设备拆除工程施工方案
- GB_T 20981-2021 面包质量通则(高清-现行)
- 企业标准化管理办法
评论
0/150
提交评论