2022届河南省洛阳市汝阳县实验高中高三适应性调研考试数学试题含解析_第1页
2022届河南省洛阳市汝阳县实验高中高三适应性调研考试数学试题含解析_第2页
2022届河南省洛阳市汝阳县实验高中高三适应性调研考试数学试题含解析_第3页
2022届河南省洛阳市汝阳县实验高中高三适应性调研考试数学试题含解析_第4页
2022届河南省洛阳市汝阳县实验高中高三适应性调研考试数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是()A. B. C. D.2.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()A. B. C. D.3.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有()A.17种 B.27种 C.37种 D.47种4.已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是().A. B. C. D.5.如图,中,点D在BC上,,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,,则,的大小关系是()A. B.C.,两种情况都存在 D.存在某一位置使得6.三棱锥的各个顶点都在求的表面上,且是等边三角形,底面,,,若点在线段上,且,则过点的平面截球所得截面的最小面积为()A. B. C. D.7.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥ B.若,,则∥C.若∥,,则 D.若,b∥,则8.已知边长为4的菱形,,为的中点,为平面内一点,若,则()A.16 B.14 C.12 D.89.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为()A. B. C. D.10.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件11.已知a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,aβ,bα,则“ab“是“αβ”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.如图,在三棱锥中,平面,,,,,分别是棱,,的中点,则异面直线与所成角的余弦值为A.0 B. C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆Г:,F1、F2是椭圆Г的左、右焦点,A为椭圆Г的上顶点,延长AF2交椭圆Г于点B,若为等腰三角形,则椭圆Г的离心率为___________.14.展开式中的系数为_________.(用数字做答)15.函数在区间内有且仅有两个零点,则实数的取值范围是_____.16.已知,则______,______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直棱柱中,底面为菱形,,,与相交于点,与相交于点.(1)求证:平面;(2)求直线与平面所成的角的正弦值.18.(12分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.19.(12分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.20.(12分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数,对于符合题意的任意,当时均有?若存在,求出所有的值;若不存在,请说明理由.21.(12分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况.现分别从、、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米):组组组假设所有植株的生长情况相互独立.从、、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为.从、、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、、(单位:厘米).这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小.(结论不要求证明)22.(10分)已知函数.(1)讨论的单调性;(2)若恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】∵y=f(x+1)是偶函数,∴f(-x+1)=f(x+1),即函数f(x)关于x=1对称.

∵当x≥1时,为减函数,∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,

故选C2.A【解析】

结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前项和公式和对数恒等式即可求解【详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为,所以原数字塔中前10层所有数字之积为.故选:A【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前项和公式应用,属于中档题3.C【解析】

由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.【详解】所有可能的情况有种,其中最大值不是4的情况有种,所以取得小球标号最大值是4的取法有种,故选:C【点睛】本题考查古典概型,考查补集思想的应用,属于基础题.4.B【解析】

先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可.【详解】由题意,双曲线的一条渐近线方程为,即,∵是直线上任意一点,则直线与直线的距离,∵圆与双曲线的右支没有公共点,则,∴,即,又故的取值范围为,故选:B.【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题.5.A【解析】

根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案.【详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,.设,则有,,,可得,.,,;,;,,,.综上可得,.故选:.【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.6.A【解析】

由题意画出图形,求出三棱锥S-ABC的外接球的半径,再求出外接球球心到D的距离,利用勾股定理求得过点D的平面截球O所得截面圆的最小半径,则答案可求.【详解】如图,设三角形ABC外接圆的圆心为G,则外接圆半径AG=,设三棱锥S-ABC的外接球的球心为O,则外接球的半径R=取SA中点E,由SA=4,AD=3SD,得DE=1,所以OD=.则过点D的平面截球O所得截面圆的最小半径为所以过点D的平面截球O所得截面的最小面积为故选:A【点睛】本题考查三棱锥的外接球问题,还考查了求截面的最小面积,属于较难题.7.C【解析】

根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足∥,b∥,故本命题不正确;B:当时,也可以满足,,故本命题不正确;C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;D:当时,也可以满足,b∥,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.8.B【解析】

取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【详解】取中点,连接,,,即.,,,则.故选:.【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.9.B【解析】

甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得.【详解】由题意甲、乙租车费用为3元的概率分别是,∴甲、乙两人所扣租车费用相同的概率为.故选:B.【点睛】本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础.10.C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列,若数列{an}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,故选C.考点:必要条件、充分条件与充要条件的判断.11.D【解析】

根据面面平行的判定及性质求解即可.【详解】解:a⊂α,b⊂β,a∥β,b∥α,由a∥b,不一定有α∥β,α与β可能相交;反之,由α∥β,可得a∥b或a与b异面,∴a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,a∥β,b∥α,则“a∥b“是“α∥β”的既不充分也不必要条件.故选:D.【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题.12.B【解析】

根据题意可得平面,,则即异面直线与所成的角,连接CG,在中,,易得,所以,所以,故选B.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

由题意可得等腰三角形的两条相等的边,设,由题可得的长,在三角形中,三角形中由余弦定理可得的值相等,可得的关系,从而求出椭圆的离心率【详解】如图,若为等腰三角形,则|BF1|=|AB|.设|BF2|=t,则|BF1|=2a−t,所以|AB|=a+t=|BF1|=2a−t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,设∠BAO=θ,则∠BAF1=2θ,所以Г的离心率e=,结合余弦定理,易得在中,,所以,即e==,故答案为:.【点睛】此题考查椭圆的定义及余弦定理的简单应用,属于中档题.14.210【解析】

转化,只有中含有,即得解.【详解】只有中含有,其中的系数为故答案为:210【点睛】本题考查了二项式系数的求解,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.15.【解析】

对函数零点问题等价转化,分离参数讨论交点个数,数形结合求解.【详解】由题:函数在区间内有且仅有两个零点,,等价于函数恰有两个公共点,作出大致图象:要有两个交点,即,所以.故答案为:【点睛】此题考查函数零点问题,根据函数零点个数求参数的取值范围,关键在于对函数零点问题恰当变形,等价转化,数形结合求解.16.【解析】

利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思想求出和的值,进而利用两角差的余弦公式求出的值.【详解】,,,.故答案为:;.【点睛】本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析(2)【解析】

(1)要证明平面,只需证明,即可:(2)取中点,连,以为原点,分别为轴建立空间直角坐标系,分别求出与平面的法向量,再利用计算即可.【详解】(1)∵底面为菱形,∵直棱柱平面.∵平面..平面;(2)如图,取中点,连,以为原点,分别为轴建立如图所示空间直角坐标系:,点,设平面的法向量为,,有,令,得又,设直线与平面所成的角为,所以故直线与平面所成的角的正弦值为.【点睛】本题考查线面垂直的证明以及向量法求线面角的正弦值,考查学生的运算求解能力,本题解题关键是正确写出点的坐标.18.(1);(2)或.【解析】

(1)求出,由,建立方程求解,即可求出结论;(2)根据函数的单调区间,极值,做出函数在的图象,即可求解.【详解】(1),由题意知,解得(舍去)或.(2)当时,故方程有根,根为或,+0-0+极大值极小值由表可见,当时,有极小值0.由上表可知的减函数区间为,递增区间为,.因为,.由数形结合可得或.【点睛】本题考查导数的几何意义,应用函数的图象是解题的关键,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.19.(1);(2)单调递减区间为,单调递增区间为,的极小值为,无极大值;(3)见解析.【解析】

(1)切点既在切线上又在曲线上得一方程,再根据斜率等于该点的导数再列一方程,解方程组即可;(2)先对求导数,根据导数判断和求解即可.(3)把证明转化为证明,然后证明极小值大于极大值即可.【详解】解:(1)函数的定义域为由已知得,则,解得.(2)由题意得,则.当时,,所以单调递减,当时,,所以单调递增,所以,单调递减区间为,单调递增区间为,的极小值为,无极大值.(3)要证成立,只需证成立.令,则,当时,单调递增,当时,单调递减,所以的极大值为,即由(2)知,时,,且的最小值点与的最大值点不同,所以,即.所以,.【点睛】知识方面,考查建立方程组求未知数,利用导数求函数的单调区间和极值以及不等式的证明;能力方面,考查推理论证能力、分析问题和解决问题的能力以及运算求解能力;试题难度大.20.(1);(2).【解析】

(1)对求导,对参数进行分类讨论,根据函数单调性即可求得.(2)先根据,得,再根据零点解得,转化不等式得,令,化简得,因此,,最后根据导数研究对应函数单调性,确定对应函数最值,即得取值集合.【详解】(1),当时,对恒成立,与题意不符,当,,∴时,即函数在单调递增,在单调递减,∵和时均有,∴,解得:,综上可知:的取值范围;(2)由(1)可知,则,由的任意性及知,,且,∴,故,又∵,令,则,且恒成立,令,而,∴时,时,∴,令,若,则时,,即函数在单调递减,∴,与不符;若,则时,,即函数在单调递减,∴,与式不符;若,解得,此时恒成立,,即函数在单调递增,又,∴时,;时,符合式,综上,存在唯一实数符合题意.【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.21.(1);(2);(3).【解析】

设事件为“甲是组的第株

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论