2022届安徽省安庆市五校联盟高考仿真卷数学试卷含解析_第1页
2022届安徽省安庆市五校联盟高考仿真卷数学试卷含解析_第2页
2022届安徽省安庆市五校联盟高考仿真卷数学试卷含解析_第3页
2022届安徽省安庆市五校联盟高考仿真卷数学试卷含解析_第4页
2022届安徽省安庆市五校联盟高考仿真卷数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2 B.3 C. D.2.要得到函数的导函数的图像,只需将的图像()A.向右平移个单位长度,再把各点的纵坐标伸长到原来的3倍B.向右平移个单位长度,再把各点的纵坐标缩短到原来的倍C.向左平移个单位长度,再把各点的纵坐标缩短到原来的倍D.向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍3.已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()A. B. C. D.4.在中,角的对边分别为,若,则的形状为()A.直角三角形 B.等腰非等边三角形C.等腰或直角三角形 D.钝角三角形5.在等差数列中,,,若(),则数列的最大值是()A. B.C.1 D.36.已知全集,函数的定义域为,集合,则下列结论正确的是A. B.C. D.7.执行如图所示的程序框图,当输出的时,则输入的的值为()A.-2 B.-1 C. D.8.已知平面,,直线满足,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件9.已知复数满足,则=()A. B.C. D.10.已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是()A. B. C. D.11.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}12.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则()A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立二、填空题:本题共4小题,每小题5分,共20分。13.设数列的前n项和为,且,若,则______________.14.如图所示的流程图中,输出的值为______.15.等边的边长为2,则在方向上的投影为________.16.已知数列的前项和为,,且满足,则数列的前10项的和为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正四棱锥中,,点、分别在线段、上,.(1)若,求证:⊥;(2)若二面角的大小为,求线段的长.18.(12分)已知在中,角,,的对边分别为,,,且.(1)求的值;(2)若,求面积的最大值.19.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程及直线的直角坐标方程;(2)求曲线上的点到直线的距离的最大值与最小值.20.(12分)设函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若函数的图象与直线所围成的四边形面积大于20,求的取值范围.21.(12分)已知,,动点满足直线与直线的斜率之积为,设点的轨迹为曲线.(1)求曲线的方程;(2)若过点的直线与曲线交于,两点,过点且与直线垂直的直线与相交于点,求的最小值及此时直线的方程.22.(10分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,,即,,因为圆的半径为,是圆的半径,所以,因为,,,,所以,三角形是直角三角形,因为,所以,,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,,将点坐标带入双曲线中可得,化简得,,,,故选D。【点睛】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。2.D【解析】

先求得,再根据三角函数图像变换的知识,选出正确选项.【详解】依题意,所以由向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍得到的图像.故选:D【点睛】本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题.3.C【解析】

由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案.【详解】由双曲线与双曲线有相同的渐近线,可得,解得,此时双曲线,则曲线的离心率为,故选C.【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.4.C【解析】

利用正弦定理将边化角,再由,化简可得,最后分类讨论可得;【详解】解:因为所以所以所以所以所以当时,为直角三角形;当时即,为等腰三角形;的形状是等腰三角形或直角三角形故选:.【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.5.D【解析】

在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时,取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.6.A【解析】

求函数定义域得集合M,N后,再判断.【详解】由题意,,∴.故选A.【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.7.B【解析】若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,符合题意;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;综上选B.8.A【解析】

,是相交平面,直线平面,则“”“”,反之,直线满足,则或//或平面,即可判断出结论.【详解】解:已知直线平面,则“”“”,反之,直线满足,则或//或平面,“”是“”的充分不必要条件.故选:A.【点睛】本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力.9.B【解析】

利用复数的代数运算法则化简即可得到结论.【详解】由,得,所以,.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.10.C【解析】试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C.考点:1.向量加减法的几何意义;2.正弦定理;3.正弦函数性质.11.B【解析】

按补集、交集定义,即可求解.【详解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故选:B.【点睛】本题考查集合间的运算,属于基础题.12.A【解析】

作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】①如图所示,过作平面,垂足为,连接,作,连接.由图可知,,所以,所以①正确.②由于,所以与所成角,所以,所以②正确.综上所述,①②都正确.故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.9【解析】

用换中的n,得,作差可得,从而数列是等比数列,再由即可得到答案.【详解】由,得,两式相减,得,即;又,解得,所以数列为首项为-3、公比为3的等比数列,所以.故答案为:9.【点睛】本题考查已知与的关系求数列通项的问题,要注意n的范围,考查学生运算求解能力,是一道中档题.14.4【解析】

根据流程图依次运行直到,结束循环,输出n,得出结果.【详解】由题:,,,结束循环,输出.故答案为:4【点睛】此题考查根据程序框图运行结果求输出值,关键在于准确识别循环结构和判断框语句.15.【解析】

建立直角坐标系,结合向量的坐标运算求解在方向上的投影即可.【详解】建立如图所示的平面直角坐标系,由题意可知:,,,则:,,且,,据此可知在方向上的投影为.【点睛】本题主要考查平面向量数量积的坐标运算,向量投影的定义与计算等知识,意在考查学生的转化能力和计算求解能力.16.1【解析】

由得时,,两式作差,可求得数列的通项公式,进一步求出数列的和.【详解】解:数列的前项和为,,且满足,①当时,,②①-②得:,整理得:(常数),故数列是以为首项,2为公比的等比数列,所以(首项不符合通项),故,所以:,故答案为:1.【点睛】本题主要考查数列的通项公式的求法及应用,数列的前项和的公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2).【解析】试题分析:由于图形是正四棱锥,因此设AC、BD交点为O,则以OA为x轴正方向,以OB为y轴正方向,OP为z轴正方向建立空间直角坐标系,可用空间向量法解决问题.(1)只要证明=0即可证明垂直;(2)设=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量为,利用法向量夹角与二面角相等或互补可求得.试题解析:(1)连结AC、BD交于点O,以OA为x轴正方向,以OB为y轴正方向,OP为z轴正方向建立空间直角坐标系.因为PA=AB=,则A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因为=0,所以MN⊥AD(2)解:因为M在PA上,可设=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).设平面MBD的法向量=(x,y,z),由,得其中一组解为x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).因为平面ABD的法向量为=(0,0,1),所以cos=,即=,解得λ=,从而M,N,所以MN==.考点:用空间向量法证垂直、求二面角.18.(1);(2).【解析】分析:(1)在式子中运用正弦、余弦定理后可得.(2)由经三角变换可得,然后运用余弦定理可得,从而得到,故得.详解:(1)由题意及正、余弦定理得,整理得,∴(2)由题意得,∴,∵,∴,∴.由余弦定理得,∴,,当且仅当时等号成立.∴.∴面积的最大值为.点睛:(1)正、余弦定理经常与三角形的面积综合在一起考查,解题时要注意整体代换的应用,如余弦定理中常用的变形,这样自然地与三角形的面积公式结合在一起.(2)运用基本不等式求最值时,要注意等号成立的条件,在解题中必须要注明.19.(1),(2)最大值,最小值【解析】

(1)由曲线的参数方程,得两式平方相加求解,根据直线的极坐标方程,展开有,再根据求解.(2)因为曲线C是一个半圆,利用数形结合,圆心到直线的距离减半径即为最小值,最大值点由图可知.【详解】(1)因为曲线的参数方程为所以两式平方相加得:因为直线的极坐标方程为.所以所以即(2)如图所示:圆心C到直线的距离为:所以圆上的点到直线的最小值为:则点M(2,0)到直线的距离为最大值:【点睛】本题主要考查参数方程,普通方程及极坐标方程的转化和直线与圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.20.(1)(2)【解析】

(Ⅰ)当时,不等式为.若,则,解得或,结合得或.若,则,不等式恒成立,结合得.综上所述,不等式解集为.(Ⅱ)则的图象与直线所围成的四边形为梯形,令,得,令,得,则梯形上底为,下底为11,高为..化简得,解得,结合,得的取值范围为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.21.(1)(2)的最小值为1,此时直线:【解析】

(1)用直接法求轨迹方程,即设动点为,把已知用坐标表示并整理即得.注意取值范围;(2)设:,将其与曲线的方程联立,消元并整理得,设,,则可得,,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论