2021-2022学年福建省师范大学附中高考全国统考预测密卷数学试卷含解析_第1页
2021-2022学年福建省师范大学附中高考全国统考预测密卷数学试卷含解析_第2页
2021-2022学年福建省师范大学附中高考全国统考预测密卷数学试卷含解析_第3页
2021-2022学年福建省师范大学附中高考全国统考预测密卷数学试卷含解析_第4页
2021-2022学年福建省师范大学附中高考全国统考预测密卷数学试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设过定点的直线与椭圆:交于不同的两点,,若原点在以为直径的圆的外部,则直线的斜率的取值范围为()A. B.C. D.2.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为()A.20 B.30 C.50 D.603.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()A. B. C. D.4.已知函数的定义域为,则函数的定义域为()A. B.C. D.5.复数的虚部为()A.—1 B.—3 C.1 D.26.双曲线的渐近线方程是()A. B. C. D.7.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且 B.,且C.,且 D.,且8.已知实数,,函数在上单调递增,则实数的取值范围是()A. B. C. D.9.设点,,不共线,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件10.执行下面的程序框图,如果输入,,则计算机输出的数是()A. B. C. D.11.已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则()A.2或 B.3或 C.4或 D.5或12.已知向量,,则与共线的单位向量为()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.已知是定义在上的奇函数,当时,,则不等式的解集用区间表示为__________.14.命题“”的否定是______.15.已知,满足约束条件则的最大值为__________.16.若的展开式中所有项的系数之和为,则______,含项的系数是______(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、、成等比数列,.设数列的前项和为,且满足.(1)求数列、的通项公式;(2)令,证明:.18.(12分)在中,角所对的边分别为,,的面积.(1)求角C;(2)求周长的取值范围.19.(12分)某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为五个小组(所调查的芯片得分均在内),得到如图所示的频率分布直方图,其中.(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.20.(12分)在直角坐标系中,曲线的参数方程为(为参数,),点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程,并指出其形状;(2)曲线与曲线交于,两点,若,求的值.21.(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.22.(10分)已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

设直线:,,,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.【详解】显然直线不满足条件,故可设直线:,,,由,得,,解得或,,,,,,解得,直线的斜率的取值范围为.故选:D.【点睛】本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题.2.D【解析】

先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.【详解】由题意,设A点的坐标为,根据对称性可得,则的面积为,当最大时,的面积最大,由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,又由,可得椭圆的上下顶点坐标为,所以的面积的最大值为.故选:D.【点睛】本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.3.A【解析】

根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,,则,,,因此,.故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.4.A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.5.B【解析】

对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.6.C【解析】

根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.7.D【解析】

首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,,.故选:D..【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.8.D【解析】

根据题意,对于函数分2段分析:当,由指数函数的性质分析可得①,当,由导数与函数单调性的关系可得,在上恒成立,变形可得②,再结合函数的单调性,分析可得③,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,

当,若为增函数,则①,

当,若为增函数,必有在上恒成立,

变形可得:,

又由,可得在上单调递减,则,

若在上恒成立,则有②,

若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有,③

联立①②③可得:.

故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.9.C【解析】

利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.10.B【解析】

先明确该程序框图的功能是计算两个数的最大公约数,再利用辗转相除法计算即可.【详解】本程序框图的功能是计算,中的最大公约数,所以,,,故当输入,,则计算机输出的数是57.故选:B.【点睛】本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题.11.C【解析】

先根据弦长求出直线的斜率,再利用抛物线定义可求出.【详解】设直线的倾斜角为,则,所以,,即,所以直线的方程为.当直线的方程为,联立,解得和,所以;同理,当直线的方程为.,综上,或.选C.【点睛】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.12.D【解析】

根据题意得,设与共线的单位向量为,利用向量共线和单位向量模为1,列式求出即可得出答案.【详解】因为,,则,所以,设与共线的单位向量为,则,解得或所以与共线的单位向量为或.故选:D.【点睛】本题考查向量的坐标运算以及共线定理和单位向量的定义.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】设,则,由题意可得故当时,由不等式,可得,或求得,或故答案为(14.,【解析】

根据特称命题的否定为全称命题得到结果即可.【详解】解:因为特称命题的否定是全称命题,所以,命题,则该命题的否定是:,故答案为:,.【点睛】本题考查全称命题与特称命题的否定关系,属于基础题.15.1【解析】

先画出约束条件的可行域,根据平移法判断出最优点,代入目标函数的解析式,易可得到目标函数的最大值.【详解】解:由约束条件得如图所示的三角形区域,由于,则,要求的最大值,则求的截距的最小值,显然当平行直线过点时,取得最大值为:.故答案为:1.【点睛】本题考查线性规划求最值问题,我们常用几何法求最值.16.【解析】的展开式中所有项的系数之和为,,,项的系数是,故答案为(1),(2).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),(2)证明见解析【解析】

(1)利用首项和公差构成方程组,从而求解出的通项公式;由的通项公式求解出的表达式,根据以及,求解出的通项公式;(2)利用错位相减法求解出的前项和,根据不等关系证明即可.【详解】(1)设首项为,公差为.由题意,得,解得,∴,∴,∴当时,∴,.当时,满足上式.∴(2),令数列的前项和为.两式相减得∴恒成立,得证.【点睛】本题考查等差数列、等比数列的综合应用,难度一般.(1)当用求解的通项公式时,一定要注意验证是否成立;(2)当一个数列符合等差乘以等比的形式,优先考虑采用错位相减法进行求和,同时注意对于错位的理解.18.(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由可得到,代入,结合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并结合正弦定理可得到,利用,,可得到,进而可求出周长的范围.【详解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周长为.∵,∴,∴,∴的周长的取值范围为.【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了三角形的面积公式,考查了学生分析问题、解决问题的能力,属于基础题.19.(1)(2)预算经费不够测试完这100颗芯片,理由见解析【解析】

(1)先求出,再利用频率分布直方图的平均数公式求这100颗芯片评测分数的平均数;(2)先求出每颗芯片的测试费用的数学期望,再比较得解.【详解】(1)依题意,,故.又因为.所以,所求平均数为(万分)(2)由题意可知,手机公司抽取一颗芯片置于一个工程机中进行检测评分达到11万分的概率.设每颗芯片的测试费用为X元,则X的可能取值为600,900,1200,1500,,,故每颗芯片的测试费用的数学期望为(元),因为,所以显然预算经费不够测试完这100颗芯片.【点睛】本题主要考查频率分布直方图的平均数的计算,考查离散型随机变量的数学期望的计算,意在考查学生对这些知识的理解掌握水平.20.(1),以为圆心,为半径的圆;(2)【解析】

(1)根据极坐标与直角坐标的互化公式,直接得到的直角坐标方程并判断形状;(2)联立直线参数方程与的直角坐标方程,根据直线参数方程中的几何意义结合求解出的值.【详解】解:(1)由,得,所以,即,.所以曲线是以为圆心,为半径的圆.(2)将代入,整理得.设点,所对应的参数分别为,,则,.,解得,则.【点睛】本题考查极坐标与直角坐标的互化以及根据直线参数方程中的几何意义求值,难度一般.(1)极坐标与直角坐标的互化公式:;(2)若要使用直线参数方程中的几何意义,要注意将直线的标准参数方程代入到对应曲线的直角坐标方程中,构成关于的一元二次方程并结合韦达定理形式进行分析求解.21.(1),.(2)见解析【解析】

(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论