版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省烟台龙口市市级名校2024届中考试题猜想数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x="1".其中正确的有A.1个 B.2个 C.3个 D.4个2.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①② B.②③ C.①③ D.①②③3.如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则()A. B. C. D.4.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x…–2–1012…y…04664…从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的5.函数y=中,自变量x的取值范围是()A.x>3 B.x<3 C.x=3 D.x≠36.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=()A.2.5 B.3 C.4 D.57.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为()A.6 B.9 C.11 D.无法计算8.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×1089.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A. B. C. D.10.如图,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分别过点B,C作BE⊥AG于点E,CF⊥AG于点F,则AE-GF的值为()A.1 B.2 C.32 D.二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:=______.12.如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当△ABM是等腰三角形时,M点的坐标为_____.13.如图,在平面直角坐标系xOy中,△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△DEF的过程:_____.14.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=_____.15.已知关于x的不等式组只有四个整数解,则实数a的取值范是______.16.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(﹣1,0),(﹣4,0),将△ABC沿x轴向左平移,当点C落在直线y=﹣2x﹣6上时,则点C沿x轴向左平移了_____个单位长度.三、解答题(共8题,共72分)17.(8分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.判断直线MN与⊙O的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.18.(8分)如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°.求证:△ADC~△DEB.19.(8分)先化简后求值:已知:x=﹣2,求的值.20.(8分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在地时距地面的高度为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?21.(8分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?22.(10分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=6,求阴影区域的面积.(结果保留根号和π)23.(12分)直线y1=kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)根据图象写出不等式kx+b﹣≤0的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.24.先化简,再计算:其中.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:∵当y1=y2时,即时,解得:x=0或x=2,∴由函数图象可以得出当x>2时,y2>y1;当0<x<2时,y1>y2;当x<0时,y2>y1.∴①错误.∵当x<0时,-直线的值都随x的增大而增大,∴当x<0时,x值越大,M值越大.∴②正确.∵抛物线的最大值为4,∴M大于4的x值不存在.∴③正确;∵当0<x<2时,y1>y2,∴当M=2时,2x=2,x=1;∵当x>2时,y2>y1,∴当M=2时,,解得(舍去).∴使得M=2的x值是1或.∴④错误.综上所述,正确的有②③2个.故选B.2、D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、C【解析】
连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题.【详解】解:如图,连接AE,
∵AB是直径,
∴∠AEB=90°,即AE⊥BC,
∵EB=EC,
∴AB=AC,
∴∠C=∠B,
∵∠BAC=50°,
∴∠C=(180°-50°)=65°,
故选:C.【点睛】本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.4、C【解析】当x=-2时,y=0,
∴抛物线过(-2,0),
∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;
当x=0时,y=6,
∴抛物线与y轴的交点坐标为(0,6),故B正确;
当x=0和x=1时,y=6,
∴对称轴为x=,故C错误;
当x<时,y随x的增大而增大,
∴抛物线在对称轴左侧部分是上升的,故D正确;
故选C.5、D【解析】由题意得,x﹣1≠0,解得x≠1.故选D.6、A【解析】
先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.【详解】∵∠ACB=90°,D为AB中点∴CD=1∵点E、F分别为BC、BD中点∴EF=1故答案为:A.【点睛】本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.7、B【解析】
有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.【详解】把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直线上,且AB为△ACH'的中线,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以阴影部分面积之和为S△ABC的3倍,又∵AB=2,AC=3,∴图中阴影部分的最大面积为3××2×3=9,故选B.【点睛】本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3倍是解题的关键.8、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:5300万=53000000=.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).9、B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.10、D【解析】
设AE=x,则AB=2x,由矩形的性质得出∠BAD=∠D=90°,CD=AB,证明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出结果.【详解】设AE=x,
∵四边形ABCD是矩形,
∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故选D.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、x(x+2)(x﹣2).【解析】试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解.12、(4,6),(8﹣27,6),(27,6).【解析】
分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标.【详解】解:当M为顶点时,AB长为底=8,M在DC中点上,所以M的坐标为(4,6),当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME=82-所以M的坐标为(8﹣27,6);当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF=82-所以M的坐标为(27,6);综上所述,M的坐标为(4,6),(8﹣27,6),(27,6);故答案为:(4,6),(8﹣27,6),(27,6).【点睛】本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.13、平移,轴对称【解析】分析:根据平移的性质和轴对称的性质即可得到由△OCD得到△AOB的过程.详解:△ABC向上平移5个单位,再沿y轴对折,得到△DEF,故答案为:平移,轴对称.点睛:考查了坐标与图形变化-旋转,平移,轴对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.14、1【解析】试题分析:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴BE=AC=4,∴AE=5﹣4=1.考点:全等三角形的性质;勾股定理15、-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a的范围.详解:由不等式①解得:由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a的范围为故答案为点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数的取值范围.16、1【解析】
先根据勾股定理求得AC的长,从而得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.【详解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC==1,∴点C的坐标为(﹣1,1).当y=﹣2x﹣6=1时,x=﹣5,∵﹣1﹣(﹣5)=1,∴点C沿x轴向左平移1个单位长度才能落在直线y=﹣2x﹣6上.故答案为1.【点睛】本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.三、解答题(共8题,共72分)17、(1)相切;(2).【解析】试题分析:(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.试题解析:(1)MN是⊙O切线.理由:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S阴=S扇形OAC﹣S△OAC=.考点:直线与圆的位置关系;扇形面积的计算.18、见解析【解析】
根据等边三角形性质得∠B=∠C,根据三角形外角性质得∠CAD=∠BDE,易证.【详解】证明:ABC是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C=∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴【点睛】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.19、【解析】
先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【详解】解:原式=1﹣•(÷)=1﹣••=1﹣=,当x=﹣2时,原式===.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.20、(1)10;1;(2);(3)4分钟、9分钟或3分钟.【解析】
(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【详解】(1)(10-100)÷20=10(米/分钟),b=3÷1×2=1.故答案为:10;1.(2)当0≤x≤2时,y=3x;当x≥2时,y=1+10×3(x-2)=1x-1.当y=1x-1=10时,x=2.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x+100)=50时,解得:x=3.答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.21、规定日期是6天.【解析】
本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【详解】解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得
解方程可得x=6,
经检验x=6是分式方程的解.
答:规定日期是6天.22、(1)证明见解析(2)﹣6π【解析】
(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.【详解】(1)证明:连接OD,∵D为弧BC的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF为半圆O的切线;(2)解:连接OC与CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语文学科核心素养的内涵
- 增城市英语短文语法填空阅读理解高考一轮训练及答案( 高考)
- 高考志愿填报的方法与技巧图文
- 三年级心理健康教育教案--学案教案
- 中学生心理健康教案
- 全省小学数学教师赛课一等奖数学一年级上册(人教2024年新编)《数学游戏》课件
- 高中物理第一章静电场课时5电势差课件新人教版选修3-
- 2024至2030年中国弹力亚麻棉数据监测研究报告
- 2024至2030年中国干式温度槽行业投资前景及策略咨询研究报告
- 2024至2030年中国天然蔺草荞麦枕数据监测研究报告
- 运用PDCA血透室导管感染率
- 2022年长江产业投资集团限公司招聘【150人】上岸笔试历年难、易错点考题附带参考答案与详解
- 大气的受热过程说课稿2023-2024学年高中地理湘教版(2019)必修一
- 国有企业参控股企业暂行管理办法(全新经典版)
- 预防事故和职业危害的措施及应注意的安全事项课件
- 铂电阻温度值对照表PT1000阻值(完整版)
- 基于Android的个性化天气预报系统的设计与软件实现
- 《神经生物学》-胶质细胞课件
- 鲁科版四年级上册英语每单元重点
- 小学英语学习分组背诵表格
- 国家开放大学日常学习行为表现
评论
0/150
提交评论