新高考数学一轮复习讲义 第55讲 二项分布、超几何分布与正态分布(原卷版)_第1页
新高考数学一轮复习讲义 第55讲 二项分布、超几何分布与正态分布(原卷版)_第2页
新高考数学一轮复习讲义 第55讲 二项分布、超几何分布与正态分布(原卷版)_第3页
新高考数学一轮复习讲义 第55讲 二项分布、超几何分布与正态分布(原卷版)_第4页
新高考数学一轮复习讲义 第55讲 二项分布、超几何分布与正态分布(原卷版)_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第55讲二项分布、超几何分布与正态分布(精讲)题型目录一览①两点分布②超几何分布③二项分布④正态分布一、知识点梳理一、知识点梳理一、两点分布1.若随机变量SKIPIF1<0服从两点分布,即其分布列为SKIPIF1<001SKIPIF1<0SKIPIF1<0SKIPIF1<0其中SKIPIF1<0,则称离散型随机变量SKIPIF1<0服从参数为SKIPIF1<0的两点分布.其中SKIPIF1<0称为成功概率.注意:两点分布的试验结果只有两个可能性,且其概率之和为SKIPIF1<0;2.两点分布的均值与方差:若随机变量SKIPIF1<0服从参数为SKIPIF1<0的两点分布,则SKIPIF1<0SKIPIF1<0,SKIPIF1<0.二、n次独立重复试验1.定义一般地,在相同条件下重复做的SKIPIF1<0次试验称为SKIPIF1<0次独立重复试验.注意:独立重复试验的条件:①每次试验在同样条件下进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生.2.特点(1)每次试验中,事件发生的概率是相同的;(2)每次试验中的事件是相互独立的,其实质是相互独立事件的特例.三、二项分布1.定义一般地,在SKIPIF1<0次独立重复试验中,用SKIPIF1<0表示事件SKIPIF1<0发生的次数,设每次试验中事件SKIPIF1<0发生的概率为SKIPIF1<0,不发生的概率SKIPIF1<0,那么事件SKIPIF1<0恰好发生SKIPIF1<0次的概率是SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0)于是得到SKIPIF1<0的分布列SKIPIF1<0SKIPIF1<0SKIPIF1<0…SKIPIF1<0…SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0…SKIPIF1<0…SKIPIF1<0由于表中第二行恰好是二项式展开式SKIPIF1<0各对应项的值,称这样的离散型随机变量SKIPIF1<0服从参数为SKIPIF1<0,SKIPIF1<0的二项分布,记作SKIPIF1<0,并称SKIPIF1<0为成功概率.注意:由二项分布的定义可以发现,两点分布是一种特殊的二项分布,即SKIPIF1<0时的二项分布,所以二项分布可以看成是两点分布的一般形式.2.二项分布的适用范围及本质(1)适用范围:①各次试验中的事件是相互独立的;②每次试验只有两种结果:事件要么发生,要么不发生;③随机变量是这SKIPIF1<0次独立重复试验中事件发生的次数.(2)本质:二项分布是放回抽样问题,在每次试验中某一事件发生的概率是相同的.3.二项分布的期望、方差若SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0.四、超几何分布1.定义在含有SKIPIF1<0件次品的SKIPIF1<0件产品中,任取SKIPIF1<0件,其中恰有SKIPIF1<0件次品,则事件SKIPIF1<0发生的概率为SKIPIF1<0,SKIPIF1<0,1,2,…,SKIPIF1<0,其中SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,称分布列为超几何分布列.如果随机变量SKIPIF1<0的分布列为超几何分布列,则称随机变量服从超几何分布.SKIPIF1<001…SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0…SKIPIF1<02.超几何分布的适用范围件及本质(1)适用范围:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考察某类个体个数SKIPIF1<0的概率分布.(2)本质:超几何分布是不放回抽样问题,在每次试验中某一事件发生的概率是不相同的.五、正态曲线1.定义:我们把函数SKIPIF1<0,SKIPIF1<0(其中SKIPIF1<0是样本均值,SKIPIF1<0是样本标准差)的图象称为正态分布密度曲线,简称正态曲线.正态曲线呈钟形,即中间高,两边低.2.正态曲线的性质(1)曲线位于SKIPIF1<0轴上方,与SKIPIF1<0轴不相交;(2)曲线是单峰的,它关于直线SKIPIF1<0对称;(3)曲线在SKIPIF1<0处达到峰值(最大值)SKIPIF1<0;(4)曲线与SKIPIF1<0轴之间的面积为1;(5)当SKIPIF1<0一定时,曲线的位置由SKIPIF1<0确定,曲线随着SKIPIF1<0的变化而沿SKIPIF1<0轴平移,如图甲所示:(6)当SKIPIF1<0一定时,曲线的形状由SKIPIF1<0确定.SKIPIF1<0越小,曲线越“高瘦”,表示总体的分布越集中;SKIPIF1<0越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示::甲乙六、正态分布1.定义随机变量SKIPIF1<0落在区间SKIPIF1<0的概率为SKIPIF1<0,即由正态曲线,过点SKIPIF1<0和点SKIPIF1<0的两条SKIPIF1<0轴的垂线,及SKIPIF1<0轴所围成的平面图形的面积,如下图中阴影部分所示,就是SKIPIF1<0落在区间SKIPIF1<0的概率的近似值.一般地,如果对于任何实数SKIPIF1<0,SKIPIF1<0,随机变量SKIPIF1<0满足SKIPIF1<0,则称随机变量SKIPIF1<0服从正态分布.正态分布完全由参数SKIPIF1<0,SKIPIF1<0确定,因此正态分布常记作SKIPIF1<0.如果随机变量SKIPIF1<0服从正态分布,则记为SKIPIF1<0.其中,参数SKIPIF1<0是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;SKIPIF1<0是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.2.SKIPIF1<0原则若SKIPIF1<0,则对于任意的实数SKIPIF1<0,SKIPIF1<0为下图中阴影部分的面积,对于固定的SKIPIF1<0和SKIPIF1<0而言,该面积随着SKIPIF1<0的减小而变大.这说明SKIPIF1<0越小,SKIPIF1<0落在区间SKIPIF1<0的概率越大,即SKIPIF1<0集中在SKIPIF1<0周围的概率越大特别地,有SKIPIF1<0;SKIPIF1<0;SKIPIF1<0SKIPIF1<0.由SKIPIF1<0SKIPIF1<0,知正态总体几乎总取值于区间SKIPIF1<0之内.而在此区间以外取值的概率只有SKIPIF1<0,通常认为这种情况在一次试验中几乎不可能发生,即为小概率事件.在实际应用中,通常认为服从于正态分布SKIPIF1<0的随机变量SKIPIF1<0只取SKIPIF1<0之间的值,并简称之为SKIPIF1<0原则.【常用结论】①超几何分布和二项分布的区别(1)超几何分布需要知道总体的容量,而二项分布不需要;(2)超几何分布是“不放回”抽取,在每次试验中某一事件发生的概率是不相同的;而二项分布是“有放回”抽取(独立重复),在每次试验中某一事件发生的概率是相同的.②求正态变量SKIPIF1<0在某区间内取值的概率的基本方法(1)根据题目中给出的条件确定SKIPIF1<0与SKIPIF1<0的值.(2)将待求问题向SKIPIF1<0,SKIPIF1<0,SKIPIF1<0这三个区间进行转化;(3)利用SKIPIF1<0在上述区间的概率、正态曲线的对称性和曲线与x轴之间的面积为1求出最后结果.二、题型分类精讲二、题型分类精讲题型一两点分布策略方法两点分布的试验结果只有两个可能性,且其概率之和为SKIPIF1<0【典例1】在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.顾客甲从10张奖券中任意抽取1张,求中奖次数X的分布列.【题型训练】一、单选题1.已知随机变量SKIPIF1<0服从两点分布,且SKIPIF1<0.设SKIPIF1<0,那么SKIPIF1<0等于(

)A.0.6 B.0.3 C.0.2 D.0.42.设某项试验的成功率是失败率的3倍,用随机变量X去描述1次试验的成功次数,则SKIPIF1<0(

)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.两点分布也叫SKIPIF1<0分布,已知随机变量SKIPIF1<0服从参数为SKIPIF1<0的两点分布,则下列选项中不正确的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.已知随机变量SKIPIF1<0服从两点分布,SKIPIF1<0,则其成功概率为(

)A.0 B.1 C.0.3 D.SKIPIF1<0二、多选题5.若随机变量X服从两点分布,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分别为随机变量X的均值与方差,则下列结论正确的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.下列选项中的随机变量SKIPIF1<0服从两点分布的是(

)A.抛掷一枚均匀的骰子,所得点数为SKIPIF1<0B.某运动员罚球命中的概率为0.8,命中得1分,不中得0分,SKIPIF1<0为罚球一次的得分C.从装有大小完全相同的5个红球、3个白球的袋中任取1个球,SKIPIF1<0D.从含有3件次品的100件产品中随机抽取一件,SKIPIF1<0为抽到的次品件数三、填空题7.已知随机变量X的取值为0,1,若SKIPIF1<0,则X的均值为.8.已知随机变量X服从两点分布,且SKIPIF1<0,SKIPIF1<0,那么SKIPIF1<0.9.已知随机变量SKIPIF1<0服从两点分布,且SKIPIF1<0,SKIPIF1<0,那么SKIPIF1<0.10.已知离散型随机变量X服从两点分布,且SKIPIF1<0,则随机变量X的方差为.四、解答题11.甲击中目标的概率是p,如果击中,得1分,否则得0分.用X表示甲的得分,计算随机变量X的数学期望.12.从装有SKIPIF1<0个白球和SKIPIF1<0个红球的口袋中任取SKIPIF1<0个球,用SKIPIF1<0表示“取到的白球个数”,则SKIPIF1<0的取值为SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0,求随机变量SKIPIF1<0的概率分布.13.一个袋中有除颜色外其余完全相同的3个白球和4个红球.(1)从袋中任意摸出一球,用0表示摸出白球,用1表示摸出红球,则有SKIPIF1<0求X的分布列;(2)从袋中任意摸出两个球,用“SKIPIF1<00”表示两个球全是白球,用“SKIPIF1<0”表示两个球不全是白球,求Y的分布列.14.篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为SKIPIF1<0.(1)若投篮1次得分记为SKIPIF1<0,求方差SKIPIF1<0的最大值;(2)当(1)中SKIPIF1<0取最大值时,求运动员甲投5次篮得分为4分的概率.15.现有SKIPIF1<0人要通过化验来确定是否患有某种疾病,化验结果阳性视为患有该疾病.化验方案SKIPIF1<0:先将这SKIPIF1<0人化验样本混在一起化验一次,若呈阳性,则还要对每个人再做一次化验;否则化验结束.已知这SKIPIF1<0人未患该疾病的概率均为SKIPIF1<0,是否患有该疾病相互独立.(1)按照方案SKIPIF1<0化验,求这SKIPIF1<0人的总化验次数SKIPIF1<0的分布列;(2)化验方案SKIPIF1<0:先将这SKIPIF1<0人随机分成两组,每组SKIPIF1<0人,将每组的SKIPIF1<0人的样本混在一起化验一次,若呈阳性,则还需要对这SKIPIF1<0人再各做一次化验;否则化验结束.若每种方案每次化验的费用都相同,且SKIPIF1<0,问方案SKIPIF1<0和SKIPIF1<0中哪个化验总费用的数学期望更小?题型二超几何分布策略方法超几何分布的实际应用问题,主要是指与两类不同元素的抽取问题的概率计算和离散型随机变量的分布列、期望及方差的求解等有关的问题.解题的关键如下:①定型:根据已知建立相应的概率模型,并确定离散型随机变量服从的分布的类型,特别要区分超几何分布与二项分布.②定参:确定超几何分布中的三个参数N,M,n.即确定试验中包含的元素的个数、特殊元素的个数及要抽取的元素个数.③列表:根据离散型随机变量的取值及其对应的概率列出分布列.④求值:根据离散型随机变量的期望和方差公式,代入相应数值求值.【典例1】一个袋中装有5个形状大小完全相同的小球,其中红球有2个,白球有3个,从中任意取出3个球.(1)求取出的3个球恰有一个红球的概率;(2)若随机变量X表示取得红球的个数,求随机变量X的分布列.【题型训练】一、单选题1.已知8名学生中有5名男生,从中选出4名代表,记选出的代表中男生人数为X,则SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至多有1个阴数的概率为()

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.某党支部有10名党员,7男3女,从中选取2人做汇报演出,若X表示选中的女党员数,则SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.14.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.某竞赛小组共有13人,其中有6名女生,现从该竞赛小组中任选5人参加一项活动,用SKIPIF1<0表示这5人中女生的人数,则下列概率中等于SKIPIF1<0的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.某学校有一个体育运动社团,该社团中会打篮球且不会踢足球的有3人,篮球、足球都会的有2人,从该社团中任取2人,设SKIPIF1<0为选出的人中篮球、足球都会的人数,若SKIPIF1<0,则该社团的人数为(

)A.5 B.6 C.7 D.10二、多选题7.某单位推出了SKIPIF1<0道有关二十大的测试题供学习者学习和测试,乙能答对其中的SKIPIF1<0道题,规定每次测试都是从这SKIPIF1<0道题中随机抽出SKIPIF1<0道,答对一题加SKIPIF1<0分,答错一题或不答减SKIPIF1<0分,最终得分最低为SKIPIF1<0分,则下列说法正确的是(

)A.乙得SKIPIF1<0分的概率是SKIPIF1<0 B.乙得SKIPIF1<0分的概率是SKIPIF1<0C.乙得SKIPIF1<0分的概率是SKIPIF1<0 D.乙得SKIPIF1<0分的概率是SKIPIF1<08.在一个袋中装有质地、大小均一样的6个黑球,4个白球,现从中任取4个小球,设取出的4个小球中白球的个数为X,则下列结论正确的是(

)A.SKIPIF1<0B.随机变量X服从二项分布C.随机变量X服从超几何分布D.SKIPIF1<09.一个袋子中装有除颜色外完全相同的10个球,其中有6个黑球,4个白球,现从中任取4个球,记随机变量SKIPIF1<0为取出白球的个数,随机变量SKIPIF1<0为取出黑球的个数,若取出一个白球得2分,取出一个黑球得1分,随机变量SKIPIF1<0为取出4个球的总得分,则下列结论中正确的是(

)A.SKIPIF1<0服从超几何分布 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0三、填空题10.从一箱脐橙(共10个,其中7个是大果,3个是中果)中任选3个,则恰有2个中果的概率为.11.莫高窟坐落在甘肃的敦煌,它是世界上现存规模最大、内容最丰富的佛教艺术胜地,每年都会吸引来自世界各地的游客参观旅游.已知购买莫高窟正常参观套票可以参观8个开放洞窟,在这8个洞窟中莫高窟九层楼96号窟、莫高窟三层楼16号窟、藏经洞17号窟被誉为最值得参观的洞窟.根据疫情防控的需要,莫高窟改为极速参观模式,游客需从套票包含的开放洞窟中随机选择4个进行参观,所有选择中至少包含2个最值得参观洞窟的概率是.12.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.则该商家拒收这批产品的概率是.13.一个袋中共有SKIPIF1<0个大小相同的黑球、白球和红球,已知从袋中任意摸出SKIPIF1<0个球,得到黑球的概率是SKIPIF1<0;从袋中任意摸出SKIPIF1<0个球,至少得到SKIPIF1<0个白球的概率是SKIPIF1<0,则白球的个数为.14.为庆祝第19届亚运会在我国杭州举行,杭州某中学举办了一次“亚运知识知多少”的知识竞赛.参赛选手从7道题(4道多选题,3道单选题)中随机抽题进行作答,若某选手先随机抽取2道题,再随机抽取1道题,则最后抽取到的题为多选题的概率为.15.在高考志愿模拟填报实验中,共有9个专业可供学生甲填报,其中学生甲感兴趣的专业有3个.若在实验中,学生甲随机选择3个专业进行填报,则填报的专业中至少有1个是学生甲感兴趣的概率为.四、解答题16.教育是阻断贫困代际传递的根本之策.补齐贫困地区义务教育发展的短板,让贫困家庭子女都能接受公平而有质量的教育,是夯实脱贫攻坚根基之所在.治贫先治愚,扶贫先扶智.为了解决某贫困地区教师资源匮乏的问题,某市教育局拟从5名优秀教师中抽选人员分批次参与支教活动.支教活动共分3批次进行,每次支教需要同时派送2名教师,且每次派送人员均从这5人中随机抽选.已知这5名优秀教师中,2人有支教经验,3人没有支教经验.(1)求5名优秀教师中的“甲”,在这3批次支教活动中恰有两次被抽选到的概率;(2)求第一次抽取到无支教经验的教师人数SKIPIF1<0的分布列;17.为弘扬中国共产党百年奋斗的光辉历程,某校团委决定举办“中国共产党党史知识”竞赛活动.竞赛共有SKIPIF1<0和SKIPIF1<0两类试题,每类试题各10题,其中每答对1道SKIPIF1<0类试题得10分;每答对1道SKIPIF1<0类试题得20分,答错都不得分.每位参加竞赛的同学从这两类试题中共抽出3道题回答(每道题抽后不放回).已知某同学SKIPIF1<0类试题中有7道题能答对,而他答对各道SKIPIF1<0类试题的概率均为SKIPIF1<0.(1)若该同学只抽取3道SKIPIF1<0类试题作答,设SKIPIF1<0表示该同学答这3道试题的总得分,求SKIPIF1<0的分布和期望;(2)若该同学在SKIPIF1<0类试题中只抽1道题作答,求他在这次竞赛中仅答对1道题的概率.18.某市移动公司为了提高服务质量,决定对使用SKIPIF1<0两种套餐的集团用户进行调查,准备从本市SKIPIF1<0个人数超过1000的大集团和3个人数低于200的小集团中随机抽取若干个集团进行调查,若一次抽取2个集团,全是大集团的概率为SKIPIF1<0.(1)在取出的2个集团是同一类集团的情况下,求全为小集团的概率;(2)若一次抽取3个集团,假设取出大集团的个数为SKIPIF1<0,求SKIPIF1<0的分布列和数学期望.19.随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,按照SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分组,并整理得到如下频率分布直方图:

根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级:学习时间:(分钟/天)SKIPIF1<0SKIPIF1<0SKIPIF1<0等级一般爱好痴迷(1)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;(2)从这两组“痴迷”的同学中随机选出2人,记ξ为选出的两人中甲大学的人数,求ξ的分布列和数学期望SKIPIF1<0;(3)试判断选出的这两组学生每天学习“中华诗词”时间的平均值SKIPIF1<0与SKIPIF1<0的大小,及方差SKIPIF1<0与SKIPIF1<0的大小.(只需写出结论)20.一座城市的夜间经济不仅有助于拉动本地居民内需,还能延长外地游客、商务办公者等的留存时间,带动当地经济发展,是衡量一座城市生活质量、消费水平、投资环境及文化发展活力的重要指标.数据显示,近年来中国各地政府对夜间经济的扶持力度加大,夜间经济的市场发展规模保持稳定增长,下表为2017—2022年中国夜间经济的市场发展规模(单位:万亿元),设2017—2022年对应的年份代码依次为1~6.年份代码x123456中国夜间经济的市场发展规模y/万亿元20.522.926.430.936.442.4(1)已知可用函数模型SKIPIF1<0拟合y与x的关系,请建立y关于x的回归方程(a,b的值精确到0.01);(2)某传媒公司发布的2023年中国夜间经济城市发展指数排行榜前10名中,吸引力超过90分的有4个,从这10个城市中随机抽取5个,记吸引力超过90分的城市数量为X,求X的分布列与数学期望.参考数据:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<03.36673.28217.251.16其中SKIPIF1<0.参考公式:对于一组数据SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,其回归直线SKIPIF1<0的斜率和截距的最小二乘法估计分别为SKIPIF1<0,SKIPIF1<0.21.2023年9月23日第19届亚运会在杭州开幕,本届亚运会共设40个竞赛大项,包括31个奥运项目和9个非奥运项目.为研究不同性别学生对杭州亚运会项目的了解情况,某学校进行了一次抽样调查,分别抽取男生和女生各50名作为样本,设事件SKIPIF1<0“了解亚运会项目”,SKIPIF1<0“学生为女生”,据统计SKIPIF1<0,SKIPIF1<0.附:SKIPIF1<0,SKIPIF1<0.SKIPIF1<00.0500.0100.001SKIPIF1<03.8416.63510.828(1)根据已知条件,填写下列2×2列联表,并依据SKIPIF1<0的独立性检验,能否认为该校学生对亚运会项目的了解情况与性别有关?了解不了解合计男生女生合计(2)现从该校了解亚运会项目的学生中,采用分层随机抽样的方法随机抽取9名学生,再从这9名学生中随机抽取4人,设抽取的4人中男生的人数为SKIPIF1<0,求SKIPIF1<0的分布列和数学期望.22.ChatGPT是由人工智能研究实验室OpenAI于2022年11月30日发布的一款全新聊天机器人棋型,它能够通过学习和理解人类的语言来进行对话,ChatGPT的开发主要采用PLHF(人类反馈强化学习)技术.在测试ChatGPT时,如果输入的问题没有语法错误,则ChatGPT的回答被采纳的概率为SKIPIF1<0,当出现语法错误时,ChatGPT的回答被采纳的概率为SKIPIF1<0.(1)在某次测试中输入了7个问题,ChatGPT的回答有5个被采纳.现从这7个问题中抽取3个,以SKIPIF1<0表示这抽取的问题中回答被采纳的问题个数,求SKIPIF1<0的分布列和数学期望;(2)已知输入的问题出现语法错误的概率为SKIPIF1<0,(i)求ChatGPT的回答被采纳的概率;(ii)若已知ChatGPT的回答被采纳,求该问题的输入没有语法错误的概率.23.某班为了庆祝我国传统节日中秋节,设计了一个小游戏:在一个不透明箱中装有4个黑球,3个红球,1个黄球,这些球除颜色外完全相同.每位学生从中一次随机摸出3个球,观察颜色后放回.若摸出的球中有SKIPIF1<0个红球,则分得SKIPIF1<0个月饼;若摸出的球中有黄球,则需要表演一个节目.(1)求一学生既分得月饼又要表演节目的概率;(2)求每位学生分得月饼数的概率分布和数学期望.24.有3男、2女共5位学生,从中随机选取3人参加创建文明城区宣传活动,用随机变量X、Y分别表示被选中的男生、女生人数.(1)写出SKIPIF1<0的分布,并求SKIPIF1<0的值;(2)求SKIPIF1<0的值.题型三二项分布策略方法二项分布的实际应用问题,主要是指与独立重复试验中的概率计算和离散型随机变量的分布列、期望及方差的求解等有关的问题.解题的关键如下:①定型,“独立”“重复”是二项分布的基本特征,“每次试验事件发生的概率都相等”是二项分布的本质特征.判断随机变量是否服从二项分布,要看在一次试验中是否只有两种试验结果,且两种试验结果发生的概率分别为p,1-p,还要看是否为n次独立重复试验,随机变量是否为某事件在这n次独立重复试验中发生的次数.②定参,确定二项分布中的两个参数n和p,即试验发生的次数和试验中事件发生的概率.③列表,根据离散型随机变量的取值及其对应的概率,列出分布列.④求值,根据离散型随机变量的期望和方差公式,代入相应数据求值.相关公式:已知X~B(n,p),则P(X=k)=Ceq\o\al(k,n)pk(1-p)n-k(k=0,1,2,…,n),E(X)=np,D(X)=np(1-p).【典例1】.某市医疗保险实行定点医疗制度,按照“就近就医,方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区有A,B,C三家社区医院,并且他们的选择相互独立.设4名参加保险人员选择A社区医院的人数为X,求X的分布列及数学期望.【典例2】随着国力的发展,人们的生活水平越来越好,我国的人均身高较新中国成立初期有大幅提高.为了掌握学生的体质与健康现状,合理制订学校体育卫生工作发展规划,某市进行了一次全市高中男生身高统计调查,数据显示全市30000名高中男生的身高SKIPIF1<0(单位:cm)服从正态分布SKIPIF1<0,且SKIPIF1<0,试估计该市身高高于180cm的高中男生人数.【题型训练】一、单选题1.已知随机变量SKIPIF1<0服从二项分布SKIPIF1<0,即SKIPIF1<0等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.“锦里开芳宴,兰缸艳早年.”元宵节是中国非常重要的传统节日,某班级准备进行“元宵福气到”抽奖活动福袋中装有标号分别为1,2,3,4,5的五个相同小球,从袋中一次性摸出三个小球,若号码之和是3的倍数,则获奖.若有5名同学参与此次活动,则恰好3人获奖的概率是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.某人参加一次考试,共有4道试题,至少答对其中3道试题才能合格.若他答每道题的正确率均为0.5,并且答每道题之间相互独立,则他能合格的概率为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.某射手每次射击击中目标的概率是0.6,且各次射击的结果互不影响,则该射手射击30次恰有18次击中目标的概率为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.已知每门大炮击中目标的概率都是0.5,现有10门大炮同时对某一目标各射击一次.记恰好击中目标3次的概率为A;若击中目标记2分,记10门大炮总得分的期望值为B,则A,B的值分别为(

)A.SKIPIF1<0,5 B.SKIPIF1<0,10 C.SKIPIF1<0,5 D.SKIPIF1<0,106.技术员小李对自己培育的新品种蔬菜种子进行发芽率的试验,每个试验组3个坑,每个坑种1粒种子.经过大量试验,每个试验组没有发芽的坑数平均数为SKIPIF1<0,则每粒种子发芽的概率SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.数轴上一个质点在随机外力的作用下,从原点0出发,每隔1秒向左或向右移动一个单位,已知向右移动的概率为SKIPIF1<0,向左移动的概率为SKIPIF1<0,共移动6次,则质点位于2的位置的概率是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.琴棋书画是中国古代四大艺术,源远流长,琴棋书画之棋,指的就是围棋.已知甲、乙两人进行五局围棋比赛,甲每局获胜的概率都是SKIPIF1<0,且各局的胜负相互独立,设甲获胜的局数为SKIPIF1<0,则SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.29.设随机变量SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.某次数学测验共有10道单选题(四个选项中只有一项是正确的),某同学全都不会做,记该同学做对的题目数为SKIPIF1<0,且SKIPIF1<0服从二项分布SKIPIF1<0,则以下说法错误的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<011.甲、乙两人进行比赛,假设每局甲胜的概率为0.6,乙胜的概率为0.4,且各局比赛互不影响.若采取“5局3胜制”,则概率最大的比赛结果是(

)A.乙SKIPIF1<0赢得比赛 B.甲SKIPIF1<0赢得比赛C.甲SKIPIF1<0赢得比赛 D.甲SKIPIF1<0赢得比赛12.排球比赛实行“五局三胜制”,根据此前的若干次比赛数据统计可知,在甲、乙两队的比赛中,每场比赛甲队获胜的概率为SKIPIF1<0,乙队获胜的概率为SKIPIF1<0,则在这场“五局三胜制”的排球赛中乙队获胜的概率为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.某人在19次射击中击中目标的次数为X,若SKIPIF1<0,若SKIPIF1<0最大,则SKIPIF1<0(

)A.14或15 B.15 C.15或16 D.1614.为了远程性和安全性上与美国波音747竞争,欧洲空中客车公司设计并制造了SKIPIF1<0,它是一种有四台发动机的远程双过道宽体客机,取代只有两台发动机的SKIPIF1<0,假设每一架飞机的引擎在飞行中出现故障率为SKIPIF1<0,且各引擎是否有故障是独立的,已知SKIPIF1<0飞机至少有3个引擎正常运行,飞机就可成功飞行;SKIPIF1<0飞机需要2个引擎全部正常运行,飞机才能成功飞行.若要使SKIPIF1<0飞机比SKIPIF1<0飞机更安全,则飞机引擎的故障率应控制的范围是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<015.甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为SKIPIF1<0,各局比赛结果相互独立且没有平局,则在甲获得冠军的情况下,比赛进行了三局的概率为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<016.某同学进行一项投篮测试,若该同学连续三次投篮成功,则通过测试;若出现连续两次失败,则不通过测试.已知该同学每次投篮的成功率为SKIPIF1<0,则该同学通过测试的概率为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<017.为了发展农村经济,某乡镇政府根据当地的地理优势计划从A,B,C三种经济作物中选取两种进行种植推广.通过调研得到当地村民愿意种植A,B,C的概率均分别为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若从当地村民中随机选取4人进行交流,则其中至少有2人愿意种植A,且至少有1人愿意种植B的概率为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<018.某学生进行投篮训练,采取积分制,有7次投篮机会,投中一次得1分,不中得0分,若连续投中两次则额外加1分,连续投中三次额外加2分,以此类推,连续投中七次额外加6分,假设该学生每次投中的概率是SKIPIF1<0,且每次投中之间相互独立,则该学生在此次训练中恰好得7分的概率是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多选题19.一个盒子里放着大小、形状完全相同的1个黑球、2个白球、2个红球,现不放回地随机从盒子中摸球,每次取一个,直到取到黑球为止,记摸到白球的个数为随机变量SKIPIF1<0,则下列说法正确的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<020.若袋子中有2个白球,3个黑球(球除了颜色不同,没有其他任何区别),现从袋子中有放回地随机取球4次,每次取一个球,取到白球记1分,取到黑球记0分,记4次取球的总分数为X,则(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<021.某区四所高中各自组建了排球队(分别记为“甲队”“乙队”“丙队”“丁队”)进行单循环比赛(即每支球队都要跟其他各支球队进行一场比赛),最后按各队的积分排列名次,积分规则为每队胜一场得3分,平一场得1分,负一场得0分.若每场比赛中两队胜、平、负的概率都为SKIPIF1<0,则在比赛结束时(

)A.甲队积分为9分的概率为SKIPIF1<0 B.四支球队的积分总和可能为15分C.甲队胜3场且乙队胜1场的概率为SKIPIF1<0 D.甲队输一场且积分超过其余每支球队积分的概率为SKIPIF1<022.一个质点在随机外力的作用下,从原点0出发,每隔SKIPIF1<0向左或向右移动一个单位,向左移动的概率为SKIPIF1<0,向右移动的概率为SKIPIF1<0.则下列结论正确的有(

)A.第八次移动后位于原点0的概率为SKIPIF1<0B.第六次移动后位于4的概率为SKIPIF1<0C.第一次移动后位于-1且第五次移动后位于1的概率为SKIPIF1<0D.已知第二次移动后位于2,则第六次移动后位于4的概率为SKIPIF1<0三、填空题23.设随机变量SKIPIF1<0,则SKIPIF1<0.24.某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为SKIPIF1<0,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X的期望是.25.将一枚质地均匀的硬币重复抛掷10次,恰好出现3次正面朝上的概率为.26.若随机变量SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0.27.甲、乙两名运动员进行羽毛球比赛,已知每局比赛甲胜的概率为SKIPIF1<0,乙胜的概率为SKIPIF1<0,且各局比赛结果相互独立.当比赛采取SKIPIF1<0局SKIPIF1<0胜制时,甲用4局赢得比赛的概率为SKIPIF1<0.现甲,乙进行SKIPIF1<0局比赛,设甲胜的局数为SKIPIF1<0则SKIPIF1<0.28.将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是.29.甲与乙进行投篮游戏,在每局游戏中两人分别投篮两次,每局投进的次数之和不少于SKIPIF1<0次则胜利,已知甲乙两名队员投篮相互独立且投进篮球的概率均为SKIPIF1<0,设SKIPIF1<0为甲乙两名队员获得胜利的局数,若游戏的局数是SKIPIF1<0,则SKIPIF1<0.30.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图所示的为一幅唐朝的投壶图,假设甲、乙是唐朝的两位投壶游戏参与者,且甲、乙每次投壶投中的概率分别为SKIPIF1<0,每人每次投壶相互独立.若约定甲投壶2次,乙投壶3次,投中次数多者胜,则乙最后获胜的概率为.四、解答题31.某闯关游戏共设置4道题,参加比赛的选手从第1题开始答题,一旦答错则停止答题,否则继续,直到答完所有题目.设选手甲答对第1题的概率为SKIPIF1<0,甲答对题序为SKIPIF1<0的题目的概率SKIPIF1<0,SKIPIF1<0,各题回答正确与否相互之间没有影响.(1)若甲已经答对了前3题,求甲答对第4题的概率;(2)求甲停止答题时答对题目数量SKIPIF1<0的分布列与数学期望.32.某中医研究所研制了一种治疗A疾病的中药,为了解其对A疾病的作用,要进行双盲实验.把60名患有A疾病的志愿者随机平均分成两组,甲组正常使用这种中药,乙组用安慰剂代替中药,全部疗期后,统计甲、乙两组的康复人数分别为20和5.(1)根据所给数据,完成下面SKIPIF1<0列联表,并判断是否有SKIPIF1<0的把握认为使用这种中药与A疾病康复有关联?康复未康复合计甲组2030乙组530合计(2)若将乙组未用药(用安慰剂代替中药)而康复的频率视为这种疾病的自愈概率,现从患有A疾病的人群中随机抽取3人,记其中能自愈的人数为SKIPIF1<0,求SKIPIF1<0的分布列和数学期望.附表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0附:SKIPIF1<0,其中SKIPIF1<0.注:双盲实验:是指在实验过程中,测验者与被测验者都不知道被测者所属的组别,(实验组或对照组),分析者在分析资料时,通常也不知道正在分析的资料属于哪一组.旨在消除可能出现在实验者和参与者意识当中的主观偏差和介入偏好.安慰剂:是指没有药物治疗作用,外形与真药相像的片、丸、针剂.33.某中学为了响应国家双减政策,开展了校园娱乐活动.在一次五子棋比赛活动中,甲、乙两位同学每赛一局,胜者得1分,对方得0分,没有平局.规定当一人比另一人多得5分或进行完10局比赛时,活动结束.假设甲、乙两位同学获胜的概率都为SKIPIF1<0,且两人各局胜负分别相互独立.已知现在已经进行了3局比赛,甲得2分,乙得1分,在此基础上继续比赛.(1)只有当一人比另一人多得5分时,得分高者才能获得比赛奖品,求甲获得比赛奖品的概率;(2)设X表示该活动结束时所进行的比赛的总轮数,求X的分布列及数学期望.34.某高校设计了一个实验学科的考查方案:考生从SKIPIF1<0道备选题中一次性随机抽取SKIPIF1<0题,按照题目要求独立完成全部实验操作,规定至少正确完成其中SKIPIF1<0题才可提交通过.已知SKIPIF1<0道备选题中考生甲有SKIPIF1<0道题能正确完成,SKIPIF1<0道题不能完成;考生乙每题正确完成的概率都是SKIPIF1<0,且每题正确完成与否互不影响.(1)求甲考生正确完成实验操作的题数的分布列,并计算均值;(2)试从甲、乙两位考生正确完成实验操作的题数的均值、方差及至少正确完成SKIPIF1<0题的概率方面比较两位考生的实验操作能力.35.为了检查工厂生产的某产品的质量指标,随机抽取了部分产品进行检测,所得数据统计如下图所示.

(1)求SKIPIF1<0的值以及这批产品的优质率:(注:产品质量指标达到130及以上为优质品);(2)若按照分层的方法从质量指标值在SKIPIF1<0的产品中随机抽取SKIPIF1<0件,再从这SKIPIF1<0件中随机抽取SKIPIF1<0件,求至少有一件的指标值在SKIPIF1<0的概率;(3)以本次抽检的频率作为概率,从工厂生产的所有产品中随机抽出SKIPIF1<0件,记这SKIPIF1<0件中优质产品的件数为SKIPIF1<0,求SKIPIF1<0的分布列与数学期望.36.学校举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的.已知小明每次投篮投中的概率都是SKIPIF1<0.(1)求小明在投篮过程中直到第三次才投中的概率;(2)求小明在4次投篮后的总得分ξ的分布列37.为了引导人民强健体魄,某市组织了一系列活动,其中乒乓球比赛的冠军由A,B两队争夺,已知A,B两队之间的比赛采用5局3胜制,且本次比赛共设有3000元奖金,奖金分配规则如下:①若比赛进行3局即可决定胜负,则赢方获得全部奖金,输方没有奖金;②若比赛进行4局即可决定胜负,则赢方获得90%的奖金,输方获得10%的奖金;③若比赛打满5局才决定胜负,则赢方获得80%的奖金,输方获得20%的奖金.已知每局比赛A队,B队赢的概率分别为SKIPIF1<0,SKIPIF1<0,且每局比赛的结果相互独立.(1)若比赛进行4局即可决定胜负,则A队赢得比赛的概率为多少?(2)求A队获得奖金金额X的分布列及数学期望.38.某电商车间生产了一批电子元件,为了检测元件是否合格,质检员设计了如图,甲所示的电路.于是他在一批产品中随机抽取了电子元件SKIPIF1<0,SKIPIF1<0,安装在如图甲所示的电路中,已知元件SKIPIF1<0的合格率都为SKIPIF1<0,元件SKIPIF1<0的合格率都为SKIPIF1<0.

(1)质检员在某次检测中,发现小灯泡亮了,他认为这三个电子元件都是合格的,求该质检员犯错误的概率;(2)经反复测验,质检员把一些电子元件SKIPIF1<0,SKIPIF1<0接入了图乙的电路中,记该电路中小灯泡亮的个数为SKIPIF1<0,求SKIPIF1<0的分布列.39.树人中学某班同学看到有关产品抽检的资料后,自己设计了一个模拟抽检方案的摸球实验.在一个不透明的箱子中放入10个小球代表从一批产品中抽取出的样本(小球除颜色外均相同),其中有SKIPIF1<0个红球(SKIPIF1<0,SKIPIF1<0),代表合格品,其余为黑球,代表不合格品,从箱中逐一摸出SKIPIF1<0个小球,方案一为不放回摸取,方案二为放回后再摸下一个,规定:若摸出的SKIPIF1<0个小球中有黑色球,则该批产品未通过抽检.(1)若采用方案一,SKIPIF1<0,SKIPIF1<0,求该批产品未通过抽检的概率;(2)(ⅰ)若SKIPIF1<0,试比较方案一和方案二,哪个方案使得该批产品通过抽检的概率大?并判断通过抽检的概率能否大于SKIPIF1<0?并说明理由.(ⅱ)若SKIPIF1<0,SKIPIF1<0,现采用(ⅰ)中概率最大的方案,设在一次实验中抽得的红球为SKIPIF1<0个,求SKIPIF1<0的分布列及数学期望.40.某校设计了一个实验学科的实验考查方案;考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作,规定:至少正确完成其中2题便可通过.已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是SKIPIF1<0,且每题正确完成与否互不影响,求:(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;(2)试用统计知识分析比较两考生的实验操作能力.题型四正态分布策略方法关于正态总体在某个区间内取值的概率求法(1)熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.2充分利用正态曲线的对称性和曲线与x轴之间面积为1.①正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相等;②PX<a=1-PX≥a,PX<μ-a=PX≥μ+a.【典例1】某闯关游戏共设置4道题,参加比赛的选手从第1题开始答题,一旦答错则停止答题,否则继续,直到答完所有题目.设选手甲答对第1题的概率为SKIPIF1<0,甲答对题序为SKIPIF1<0的题目的概率SKIPIF1<0,SKIPIF1<0,各题回答正确与否相互之间没有影响.(1)若甲已经答对了前3题,求甲答对第4题的概率;(2)求甲停止答题时答对题目数量SKIPIF1<0的分布列与数学期望.【题型训练】一、单选题1.已知随机变量SKIPIF1<0,则SKIPIF1<0的值约为(

)A.0.0214 B.0.1358 C.0.8185 D.0.97592.若随机变量SKIPIF1<0,则下列选项错误的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.某市教学质量检测中,甲、乙、丙三科考试成绩的正态分布图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),下列说法中正确的是(

A.甲科总体的标准差最小 B.丙科总体的平均数最小C.乙科总体的标准差及平均数都居中 D.甲、乙、丙总体的平均数不相同4.设随机变量SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0(

)A.0.75 B.0.5 C.0.3 D.0.255.在日常生活中,许多现象都服从正态分布.若SKIPIF1<0,记SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,经统计,某零件的尺寸大小SKIPIF1<0(单位:dm)从正态分布SKIPIF1<0,则SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.某学校共SKIPIF1<0人参加数学测验,考试成绩SKIPIF1<0近似服从正态分布SKIPIF1<0,若SKIPIF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论