版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个等腰三角形的两边长分别为3、7,则它的周长为()A.17 B.13或17 C.13 D.102.若过多边形的每一个顶点只有6条对角线,则这个多边形是()A.六边形 B.八边形 C.九边形 D.十边形3.“高高兴兴上学,平平安安回家”,交通安全与我们每一位同学都息息相关,下列四个交通标志中,属于轴对称图形的是()A. B. C. D.4.在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是()A.4 B.6 C.8 D.105.在△ABC中,∠C=100°,∠B=40°,则∠A的度数为()A.30° B.40° C.50° D.60°6.把分式方程化为整式方程正确的是()A. B.C. D.7.直角三角形的两条边长分别是5和12,它的斜边长为()A.13 B. C.13或12 D.13或8.下列分式中,最简分式的个数是()A.1个 B.2个 C.3个 D.4个9.下列实数中,属于无理数的是()A. B.2﹣3 C.π D.10.一个直角三角形的两条边长分别为3cm,4cm,则该三角形的第三条边长为()A.7cm B.5cm C.7cm或5cm D.5cm或11.下列各分式中,是最简分式的是().A. B. C. D.12.函数的图象如图所示,则函数的大致图象是()A. B. C. D.二、填空题(每题4分,共24分)13.已知:如图,,点为内部一点,点关于的对称点的连线交于两点,连接,若,则的周长=__________.14.命题“全等三角形的面积相等”的逆命题是_____命题.(填入“真”或“假”)15.若不等式组有解,则的取值范围是____.16.多项式分解因式的结果是____.17.二元一次方程组的解为_________.18.已知点A与B关于x轴对称,若点A坐标为(﹣3,1),则点B的坐标为____.三、解答题(共78分)19.(8分)在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题.(1)(课本习题)如图①,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.求证:DB=DE(2)(尝试变式)如图②,△ABC是等边三角形,D是AC边上任意一点,延长BC至E,使CE=AD.求证:DB=DE.(3)(拓展延伸)如图③,△ABC是等边三角形,D是AC延长线上任意一点,延长BC至E,使CE=AD请问DB与DE是否相等?并证明你的结论.20.(8分)如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)画出关于x轴的对称图形;(2)将,沿轴方向向左平移3个单位、再沿轴向下平移1个单位后得到,写出,,顶点的坐标.21.(8分)求下列代数式的值:(1)a(a+2b)-(a+b)(a-b),其中,(2),其中=1.22.(10分)已知:如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DM⊥AB,DN⊥AC,垂足分别为M、N.求证:BM=CN23.(10分)在一次捐款活动中,学校团支书想了解本校学生的捐款情况,随机抽取了50名学生的捐款进行了统计,并绘制成如图所示的统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)如果捐款的学生有300人,估计这次捐款有多少元?24.(10分)先化简式子:÷(a+2﹣),再从3,2,0三个数中选一个恰当的数作为a的值代入求值.25.(12分)某中学举行“中国梦·校园好声音”歌手大赛,高、初中根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如下图所示:根据图示信息,整理分析数据如下表:平均数(分)中位数(分)众数(分)初中部85高中部85100(说明:图中虚线部分的间隔距离均相等)(1)求出表格中的值;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.26.运动会结束后八(1)班班主任准备购买一批明信片奖励积极参与运动会各个比赛项目的学生,计划用班费180元购买A、B两种明信片共20盒,已知A种明信片每盒12元,B种明信片每盒8元.(1)根据题意,甲同学列出了尚不完整的方程组如下:;请在括号内填上具体的数字并说出a,b分别表示的含义,甲:a表示__________,b表示_______________;(2)乙同学设了未知数但不会列方程,请你帮他把方程补充完整并求出该方程组的解;乙:x表示购买了A种明信片的盒数,y表示购买了B种明信片的盒数.
参考答案一、选择题(每题4分,共48分)1、A【分析】题目中没有明确底和腰,故要先进行分类讨论,再结合三角形三边关系定理分析即可解答.【详解】∵①当3为腰、7为底时,三角形的三边分别为3、3、7,此时不满足三角形三边关系定理舍去;②当3为底、7为腰时,三角形的三边分别为3、7、7,此时满足三角形三边关系定理.∴等腰三角形的周长是:故选:A【点睛】本题考查了等腰三角形的性质以及三角形三边关系定理.解题的关键是熟练掌握三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.2、C【分析】从n边形的一个顶点可以作条对角线.【详解】解:∵多边形从每一个顶点出发都有条对角线,∴多边形的边数为6+3=9,∴这个多边形是九边形.故选:C.【点睛】掌握边形的性质为本题的关键.3、D【分析】将一个图形一部分沿一条直线对折,能与另一部分完全重合,则这个图形叫轴对称图形,据此判断即可求解.【详解】解:根据轴对称图形的定义,只有D选项图形是轴对称图形.故选:D【点睛】本题考查了轴对称图形的概念,熟知轴对称图形定义是解题关键.4、C【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选C.【点睛】本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决.5、B【分析】直接根据三角形内角和定理解答即可.【详解】解:中,,,.故选:B.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于是解答此题的关键.6、C【解析】方程两边同乘最简公分母x(x+1),得:2(x+1)-x2=x(x+1),故选C.7、A【分析】直接利用勾股定理即可解出斜边的长.【详解】解:由题意得:斜边长=,故选:A.【点睛】本题主要考查勾股定理,掌握勾股定理的基本运用是解答本题的关键.8、B【分析】利用最简分式的定义逐个分析即可得出答案.【详解】解:,,,这三个不是最简分式,所以最简分式有:,共2个,故选:B.【点睛】本题考查了最简分式的定义,熟练掌握相关知识点是解题关键.9、C【分析】无理数就是无限不循环小数.【详解】解:是分数可以化为无限循环小数,属于有理数,故选项A不合题意;,是分数,属于有理数,故选项B不合题意;π是无理数,故选项C符合题意;,是整数,故选项D不合题意.故选:C.【点睛】理解无理数的概念,同时也需要理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.10、D【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为,
(1)若4是直角边,则第三边是斜边,由勾股定理得:
,∴;
(2)若4是斜边,则第三边为直角边,由勾股定理得:
,∴;
综上:第三边的长为5或.
故选:D.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.11、A【分析】根据定义进行判断即可.【详解】解:A、分子、分母不含公因式,是最简分式;B、==x-y,能约分,不是最简分式;C、==,能约分,不是最简分式;D、=,能约分,不是最简分式.故选A.【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.12、B【分析】根据一次函数的图象的性质确定a和b的符号,进而解答即可.【详解】解:由函数y=ax+b-2的图象可得:a<0,b-2=0,
∴a<0,b=2>0,
所以函数y=-ax-b的大致图象经过第一、四、三象限,
故选:B.【点睛】本题考查了一次函数的性质,关键是根据一次函数的图象的性质确定a和b的符号.二、填空题(每题4分,共24分)13、【分析】连接OP1,OP2,利用对称的性质得出OP=OP1=OP2=2,再证明△OP1P2是等腰直角三角形,则△PMN的周长转化成P1P2的长即可.【详解】解:如图,连接OP1,OP2,∵OP=2,根据轴对称的性质可得:OP=OP1=OP2=2,PN=P2N,PM=P1M,∠BOP=∠BOP2,∠AOP=∠AOP1,∵∠AOB=45°,∴∠P1OP2=90°,即△OP1P2是等腰直角三角形,∵PN=P2N,PM=P1M,∴△PMN的周长=P1M+P2N+MN=P1P2,∵P1P2=OP1=.故答案为:.【点睛】本题考查轴对称的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用对称的性质将三角形周长转化成线段的长度.14、假【解析】试题分析:原命题的逆命题为:面积相等的两个三角形为全等三角形,则这个命题为假命题.考点:逆命题15、【分析】根据题意,利用不等式组取解集的方法即可得到m的范围.【详解】解:由题知不等式为,∵不等式有解,∴,∴,故答案为.【点睛】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.16、【分析】先提取公因式a,再利用平方差公式()因式分解即可.【详解】解:.故答案为:.【点睛】本题考查综合运用提公因式法和公式法因式分解.一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解.如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式.同时,因式分解要彻底,要分解到不能分解为止.17、【分析】方程组利用加减消元法求出解即可.【详解】解,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为,故答案为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18、(﹣3,﹣1)【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】解:点A与点B关于x轴对称,点A的坐标为(﹣3,1),则点B的坐标是(﹣3,﹣1).故答案为(﹣3,﹣1).【点睛】本题考查关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题的关键.三、解答题(共78分)19、(1)见详解;(2)见详解;(3)DB=DE成立,证明见详解【分析】(1)由等边三角形的性质,得到∠CBD=30°,∠ACB=60°,由CD=CE,则∠E=∠CDE=30°,得到∠E=∠CBD=30°,即可得到DB=DE;(2)过点D作DG∥AB,交BC于点G,证明△BDC≌△EDG,根据全等三角形的性质证明结论;(3)过点D作DF∥AB交BE于F,由“SAS”可证△BCD≌△EFD,可得DB=DE.【详解】证明:(1)∵△ABC是等边三角形∴∠ABC=∠BCA=60°,∵点D为线段AC的中点,∴BD平分∠ABC,AD=CD,∴∠CBD=30°,∵CD=CE,∴∠CDE=∠CED,又∵∠CDE+∠CED=∠BCD,∴2∠CED=60°,∴∠CED=30°=∠CBD,∴DB=DE;(2)过点D作DG∥AB,交BC于点G,如图,∴∠DGC=∠ABC=60°,又∠DCG=60°,∴△DGC为等边三角形,∴DG=GC=CD,∴BC-GC=AC-CD,即AD=BG,∵AD=CE,∴BG=CE,∴BC=GE,在△BDC和△EDG中,,∴△BDC≌△EDG(SAS)∴BD=DE;(3)DB=DE成立,理由如下:过点D作DF∥AB交BE于F,∴∠CDF=∠A,∠CFD=∠ABC,∵△ABC是等边三角形∴∠ABC=∠BCA=∠A=60°,BC=AC=AB,∴∠CDF=∠CFD=60°=∠ACB=∠DCF,∴△CDF为等边三角形∴CD=DF=CF,又AD=CE,∴AD-CD=CE-CF,∴BC=AC=EF,∵∠BCD=∠CFD+∠CDF=120°,∠DFE=∠FCD+∠FDC=120°,∴∠BCD=∠DFE,且BC=EF,CD=DF,∴△BCD≌△EFD(SAS)∴DB=DE.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,以及平行线的性质,正确添加恰当辅助线构造全等三角形是本题的关键.20、(1)作图见解析;(2)作图见解析A2(﹣3,﹣2),B2(0,﹣3),C2(﹣2,﹣5).【分析】(1)关于x轴的两点横坐标相同,纵坐标互为相反数,分别画出各点,然后顺次进行连接得出图形;(2)根据平移的法则画出图形,得出各点的坐标.【详解】解:(1)、如图所示:△A1B1C1,即为所求;(2)、如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣2),B2(0,﹣3),C2(﹣2,﹣5)【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.21、(3)2ab+b2,2;(2)x+3,2039【分析】(3)根据单项式乘多项式法则和平方差公式化简,然后根据零指数幂的性质和负指数幂的性质计算出a和b,最后代入求值即可;(2)根据分式的各个运算法则化简,然后代入求值即可.【详解】解:(3)a(a+2b)-(a+b)(a-b)=a2+2ab-a2+b2=2ab+b2.当=3,=4时,原式=2×3×4+4²=2.(2)===x+3.当=3时,原式=3+3=2039.【点睛】此题考查的是整式的化简求值和分式的化简求值,掌握单项式乘多项式法则、平方差公式、零指数幂的性质、负指数幂的性质和分式的各个运算法则是解决此题的关键.22、见解析【分析】先由角平分线性质得到DM=DN,再证Rt△DMB≌Rt△DNC,根据全等三角形对应边相等即可得到答案.【详解】证明:∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN
又∵点D是BC的中点∴BD=CD
,
∴Rt△DMB≌Rt△DNC(HL)∴BM=CN.【点睛】本题主要考查角平分线的性质、三角形全等的判定(AAS、ASA、SSS、SAS、HL),熟练掌握全等三角形的判定是解题的关键.23、(1)15,15;(2)估计这次捐款有3900元.【解析】(1)根据众数和中位数的定义求解;(2)先计算出样本的平均数,然后利用样本估计总体,用样本平均数乘以300即可.【详解】解:(1)这50名同学捐款的众数为15元,第25个数和第26个数都是15元,所以中位数为15元;故答案为15,15;(2)样本的平均数=150(5×8+10×14+15×20+20×6+25×2)=13(元)300×13=3900,所以估计这次捐款有3900元.故答案为:(1)15,15;(2)估计这次捐款有3900元.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.24、,【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a的值代入计算即可.【详解】解:÷(a+2﹣)=÷(﹣)=÷=•=∵a≠±3且a≠2,∴a=0.则原式=.【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电气设备维护与保养服务合同3篇
- 2024年度物流与供应链管理合同
- 2024年度广告发布合同:品牌宣传与推广服务2篇
- 《vr太阳光设定基础》课件
- 2024年度供应链管理系统开发合同5篇
- 2024年度企业资产转让合同(含市场准入)
- 2024年度大连龙门吊安全检测与维修服务合同
- 2024年度旅游服务合同导游安排与责任
- 2024年度文化艺术节组织策划合同2篇
- 2024年度茶山茶叶产业绿色发展合同
- 互联网信息审核员考试题库大全-上(单选题汇总)
- 机电一体化技术专业职业生涯规划书
- 2024届高考语文一轮复习:现代诗歌 专练(含答案)
- 体校及体育培训行业营销方案
- Unit 3 My friends单元教学分析(素材)人教PEP版英语四年级上册
- 调整我的情绪小怪兽
- 房屋出售独家委托协议
- 咖啡厅产品及服务方案
- 黑猪土猪肉制品项目商业计划书
- (HAF603)民用核安全设备焊工认证考试题库 (判断题)
- 融媒体内容策划与制作竞赛考试参考题库(含答案)
评论
0/150
提交评论