版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列计算中正确的是()A. B. C. D.2.如图,正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A.36°B.54°C.60°D.72°3.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按图中所标注的数据,计算图中实线所围成的面积S是()A.50 B.62 C.65 D.684.如图,已知,下列结论:①;②;③;④;⑤;⑥;⑦.其中正确的有()A.个 B.个 C.个 D.个5.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C. D.26.如图,直线分别与轴,轴相交于点、,以点为圆心,长为半轻画弧交轴于点,再过点作轴的垂线交直线于点,以点为圆心,长为半径画弧交轴于点,,按此作法进行下去,则点的坐标是()A. B. C. D.7.在平面直角坐标系xOy中,点A(-1,-2)关于x轴对称的点的坐标是A.(1,2) B.(1,-2) C.(-1,2) D.(-1,-2)8.点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是()A.(﹣3,4) B.(3,﹣4) C.(﹣4,3) D.(4,﹣3)9.如图,中,,,DE是AC边的垂直平分线,则的度数为()A. B. C. D.10.下列能用平方差公式计算的是().A. B.C. D.11.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为()A.6 B.7 C.8 D.1012.某班共有学生40人,其中10月份生日的学生人数为8人,则10月份生日学生的频数和频率分别为()A.10和25% B.25%和10 C.8和20% D.20%和8二、填空题(每题4分,共24分)13.把直线y=﹣x向下平移_____个单位得到直线y=﹣x﹣1.14.若方程组无解,则y=kx﹣2图象不经过第_____象限.15.因式分解:.16.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论,其中正确的结论是_____.①AE=CF,②AP=EF,③△EPF是等腰直角三角形,④四边形AEPF的面积是△ABC面积的一半.17.如图所示,,,,点在线段上.若,,则______.18.若(x+3)0=1,则x应满足条件_____.三、解答题(共78分)19.(8分)平面直角坐标系中,点坐标为,分别是轴,轴正半轴上一点,过点作轴,,点在第一象限,,连接交轴于点,,连接.(1)请通过计算说明;(2)求证;(3)请直接写出的长为.20.(8分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?21.(8分)如图,点、在上,,,.求证:.22.(10分)某单位举行“健康人生”徒步走活动,某人从起点体育村沿建设路到市生态园,再沿原路返回,设此人离开起点的路程s(千米)与徒步时间t(小时)之间的函数关系如图所示,其中从起点到市生态园的平均速度是4千米/小时,用2小时,根据图象提供信息,解答下列问题.(1)求图中的a值.(2)若在距离起点5千米处有一个地点C,此人从第一次经过点C到第二次经过点C,所用时间为1.75小时.①求AB所在直线的函数解析式;②请你直接回答,此人走完全程所用的时间.23.(10分)如图,过点A(1,3)的一次函数y=kx+6(k≠0)的图象分别与x轴,y轴相交于B,C两点.(1)求k的值;(2)直线l与y轴相交于点D(0,2),与线段BC相交于点E.(i)若直线l把△BOC分成面积比为1:2的两部分,求直线l的函数表达式;(ⅱ)连接AD,若△ADE是以AE为腰的等腰三角形,求满足条件的点E的坐标.24.(10分)已知△ABC等边三角形,△BDC是顶角120°的等腰三角形,以D为顶点作60°的角,它的两边分别与AB.AC所在的直线相交于点M和N,连接MN.(1)如图1,当点M、点N在边AB、AC上且DM=DN时,探究:BM、MN、NC之间的关系,并直接写出你的结论;(2)如图2,当点M、点N在边AB、AC上,但DM≠DN时,(1)中的结论还成立吗?写出你的猜想并加以证明;(3)如图3,若点M、N分别在射线AB、CA上,其他条件不变,(1)中的结论还成立吗?若成立,写出你的猜想;若不成立,请直接写出新的结论.25.(12分)(1)问题:如图在中,,,为边上一点(不与点,重合),连接,过点作,并满足,连接.则线段和线段的数量关系是_______,位置关系是_______.(2)探索:如图,当点为边上一点(不与点,重合),与均为等腰直角三角形,,,.试探索线段,,之间满足的等量关系,并证明你的结论;(3)拓展:如图,在四边形中,,若,,请直接写出线段的长.26.如图,三个顶点坐标分别是(1)请画出关于轴对称的;(2)直接写出的坐标;(3)求出的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】运用幂的运算法则即可进行判断.【详解】A中和不是同底数幂,也不是同类项,不能合并,A错;同底数幂相除,底数不变,指数相减,B错;同底数幂相乘,底数不变,指数相加,C错;幂的乘方,底数不变,指数相乘,D对故本题正确选项为D.【点睛】本题考查了幂的运算法则,掌握相关知识点是解决本类题的关键.2、B【分析】先求出正五边形一个的外角,再求出内角度数,然后在四边形BCDG中,利用四边形内角和求出∠G.【详解】∵正五边形外角和为360°,∴外角,∴内角,∵BG平分∠ABC,DG平分正五边形的外角∠EDF∴,在四边形BCDG中,∴故选B.【点睛】本题考查多边形角度的计算,正多边形可先计算外角,再计算内角更加快捷简便.3、A【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△AGB,所以AF=BG,AG=EF;同理证得△BGC≌△CHD,GC=DH,CH=BG.故可求出FH的长,然后利用面积的割补法和面积公式即可求出图形的面积.【详解】∵如图,AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90º,∠EAF+∠BAG=90º,∠ABG+∠BAG=90º⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△AGB,∴AF=BG,AG=EF.同理证得△BGC≌△CHD得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16−3×4−6×3=50.故选A.【点睛】此题考查全等三角形的性质与判定,解题关键在于证明△EFA≌△AGB和△BGC≌△CHD.4、C【分析】利用得到对应边和对应角相等可以推出①③,根据对应角相等、对应边相等可推出②④⑦,再根据全等三角形面积相等可推出⑤,正确;根据已知条件不能推出⑥.【详解】解:①∵∴故①正确;②∵∴即:,故②正确;③∵∴;∴即:,故③正确;④∵∴;∴,故④正确;⑤∵∴,故⑤正确;⑥根据已知条件不能证得,故⑥错误;⑦∵∴;∴,故⑦正确;故①②③④⑤⑦,正确的6个.故选C.【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应边相等,对应角相等是解答此题的关键.5、B【分析】根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【详解】解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选B.【点睛】本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.6、B【分析】先根据勾股定理求出的长度,然后得到的坐标,找到规律即可得到点的坐标.【详解】当时,当时,,解得∴∴∴即∴即由此可得即故选:B.【点睛】本题主要考查勾股定理,找到点的坐标的规律是解题的关键.7、C【解析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答即可.【详解】点A(-1,-2)关于x轴对称的点的坐标是(-1,2).故选C.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.8、C【详解】由点且到x轴的距离为2、到y轴的距离为1,得
|y|=2,|x|=1.
由P是第二象限的点,得
x=-1,y=2.
即点P的坐标是(-1,2),
故选C.9、A【分析】由等腰三角形性质,得到,由DE垂直平分AC,得到AE=CE,则,然后求出.【详解】解:∵在中,,,∴,∵DE是AC边的垂直平分线,∴AE=CE,∴,∴;故选择:A.【点睛】本题考查了等腰三角形的性质,垂直平分线性质定理,以及三角形内角和定理,解题的关键是掌握所学性质,正确求出.10、B【分析】根据平方差公式的特点即可求解.【详解】A.=,不符合题意;B.=,符合题意;C.=,不能使用平方差公式,故错误;D.不能使用平方差公式,故错误;故选B.【点睛】此题主要考查平方差公式,解题的关键是熟知平方差公式适用的特点.11、C【解析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=1.又CE=CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.12、C【分析】直接利用频数与频率的定义分析得出答案.【详解】解:∵某班共有学生40人,其中10月份生日的学生人数为8人,∴10月份生日学生的频数和频率分别为:8、=0.2.故选:C.【点睛】此题考查了频数与频率,正确掌握相关定义是解题关键.二、填空题(每题4分,共24分)13、1.【分析】直接根据“上加下减”的原则即可解答.【详解】解:∵0﹣(﹣1)=1,∴根据“上加下减”的原则可知,把直线y=﹣x向下平移1个单位得到直线y=﹣x﹣1.故答案为:1.【点睛】本题考查一次函数的图像与几何变换,熟知图像平移的法则是解题的关键.14、一【分析】根据两直线平行没有公共点得到k=3k+1,解得k=﹣,则一次函数y=kx﹣2为y=﹣x﹣2,然后根据一次函数的性质解决问题.【详解】解:∵方程组无解,∴k=3k+1,解得k=﹣,∴一次函数y=kx﹣2为y=﹣x﹣2,一次函数y=﹣x﹣2经过第二、三、四象限,不经过第一象限.故答案为一.【点睛】本题考查一次函数与二元一次方程组的关系、一次函数图像与系数的关系,解题的关键是求出k的值.15、【详解】解:=;故答案为16、①③④.【分析】根据等腰直角三角形的性质得:∠B=∠C=45°,AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴∠B=∠C=45°,AP⊥BC,AP=BC=PC=BP,∠BAP=∠CAP=45°,∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA),∴AE=CF;EP=PF,即△EPF是等腰直角三角形;故①③正确;S△AEP=S△CFP,∵四边形AEPF的面积=S△AEP+S△APF=S△CFP+S△APF=S△APC=S△ABC,∴四边形AEPF的面积是△ABC面积的一半,故④正确∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;故答案为:①③④.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键.17、55°【分析】先证明△ABD≌△ACE(SAS);再利用全等三角形的性质:对应角相等,求得∠2=∠ABE;最后根据三角形内角与外角的性质即可求出答案.【详解】∵,∴∠1+∠CAD=∠CAE+∠CAD,
∴∠1=∠CAE;在△ABD与△ACE中,,∴△ABD≌△ACE(SAS);
∴∠2=∠ABE;
∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,
∴∠3=55°.
故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.18、x≠﹣3【解析】根据零次幂的性质a0=1(a≠0),可知x+3≠0,解得x≠-3.故答案为x≠-3.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3).【解析】(1)先根据点A坐标可得OA的长,再根据即可得证;(2)如图(见解析),延长至点,使得,连接,先根据三角形全等的判定定理与性质可得,再根据直角三角形的性质和得出,然后根据三角形全等的判定定理与性质即可得证;(3)先由题(2)两个三角形全等可得,再根据平行线的性质得出,从而有,然后根据等腰三角形的定义(等角对等边)即可得.【详解】(1),即;(2)如图,延长至点,使得,连接,轴,即;(3)由(2)已证,轴(等角对等边)故答案为:1.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的定义、平行线的性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.20、(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【分析】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意,得:.解得:,经检验,是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,(天),答:甲乙两队合作完成该工程需要18天.【点睛】本题考查分式方程的应用,理解题意,根据等量关系列出方程是解题的关键.21、证明见解析.【分析】由可得,BC=EF,从而可利用AAS证得△ABC≌△DEF,从而得出AB=DE.【详解】证明:,即,在和中,,.【点睛】本题考查的是全等三角形的判定,本题的关键是掌握全等三角形的判定方法.22、(1)a=1;(2)①s=–3t+2;②t=.【解析】(1)根据路程=速度×时间即可求出a值;(2)①根据速度=路程÷时间求出此人返回时的速度,再根据路程=1-返回时的速度×时间即可得出AB所在直线的函数解析式;②令①中的函数关系式中s=0,求出t值即可.【详解】(1)a=4×2=1.(2)①此人返回的速度为(1–5)÷(1.75–)=3(千米/小时),AB所在直线的函数解析式为s=1–3(t–2)=–3t+2.②当s=–3t+2=0时,t=.答:此人走完全程所用的时间为小时.【点睛】本题考查了一次函数的应用,解题的关键是:(1)根据路程=速度×时间求出a值;(2)①根据路程=1-返回时的速度×时间列出s与t之间的函数解析式;②令s=0求出t值.23、(1)-3;(2)(i)y=±x+2;(ⅱ)点E的坐标为:(,)或(,).【分析】(1)将点A的坐标代入一次函数y=kx+6中,即可解得k的值;(2)(i)先求出△BCO的面积,根据直线l把△BOC分成面积比为1:2的两部得出△CDE的面积,根据三角形面积公式得出E的横坐标,将横坐标代入y=kx+6即可得到E的坐标,点E的坐标代入直线l表达式,即可求出直线l表达式;(ⅱ)设点E(m,﹣3m+6),根据两点间的距离公式列出方程,解得点E的坐标.【详解】(1)将点A的坐标代入一次函数y=kx+6并解得:k=﹣3;(2)一次函数y=﹣3x+6分别与x轴,y轴相交于B,C两点,则点B、C的坐标分别为:(2,0)、(0,6);(i)S△BCO=OB×CO=2×6=6,直线l把△BOC分成面积比为1:2的两部分,则S△CDE=2或4,而S△CDE=×CD×=4×=2或4,则=1或2,故点E(1,3)或(2,0),将点E的坐标代入直线l表达式并解得:直线l的表达式为:y=±x+2;(ⅱ)设点E(m,﹣3m+6),而点A、D的坐标分别为:(1,3)、(0,2),则AE2=(m﹣1)2+(3﹣3m)2,AD2=2,ED2=m2+(4﹣3m)2,当AE=AD时,(m﹣1)2+(3﹣3m)2=2,解得:m=(不合题意值已舍去);当AE=ED时,同理可得:m=;综上,点E的坐标为:(,)或(,).【点睛】本题考查了直线解析式的综合问题,掌握直线解析式的解法、三角形面积公式、两点的距离公式、等腰三角形的性质、一元二次方程的解法是解题的关键.24、(1)BM+CN=MN;(2)成立;证明见解析;(3)MN=CN-BM.【分析】(1)首先证明Rt△BDM≌Rt△CDN,进而得出△DMN是等边三角形,∠BDM=∠CDN=30°,NC=BM=DM=MN,即可得出答案;
(2)延长AC至E,使得CE=BM并连接DE,构造全等三角形,找到相等的线段DE=DM,再进一步证明△MDN≌△EDN,进而等量代换得到MN=BM+NC;
(3)在CA上截取CE=BM,同理先证Rt△DCE≌Rt△DBM,再证△MDN≌△EDN(SAS),即可得证.【详解】(1)∵△ABC是正三角形,
∴∠ABC=∠ACB=60°,∵△BDC是顶角∠BDC=120°的等腰三角形,
∴∠DBC=∠DCB=30°,
∴∠DBM=∠DCN=90°,
∵在Rt△BDM和Rt△CDN中,,∴Rt△BDM≌Rt△CDN(HL),
∴BM=CN,∠BDM=∠CDN,
∵∠MDN=60°,,
∴△DMN是等边三角形,∠BDM=∠CDN=30°,
∴NC=BM=DM=MN,∴MN=MB+NC;
(2)成立.理由如下:延长AC至E,使CE=BM,连接DE,
∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,
∴∠BCD=30°,
∴∠ABD=∠ACD=90°,
即∠ECD=∠MBD=90°,
∵在Rt△DCE和Rt△DBM中,,
∴Rt△DCE≌Rt△DBM(SAS),
∴∠BDM=∠CDE,DE=DM,
又∵∠BDC=120°,∠MDN=60°,
∴∠BDM+∠NDC=∠BDC-∠MDN=60°,
∴∠CDE+∠NDC=60°,即∠NDE=60°,
∴∠MDN=∠NDE=60°,∵在△DMN和△DEN中,,∴△DMN≌△DEN(SAS),∴NE=NM,即CE+CN=NM,
∴BM+CN=NM;
(2)MN=CN-BM,理由如下:在CA上截取CE=BM,连接DM,
同理可证明:Rt△DCE≌Rt△DBM(SAS),
∴DE=DM,∠EDC=∠BDM,
∵∠MDN=∠MDB+∠BDN=60°,
∴∠BDN+∠CDE=60°,
∴∠NDE=∠NDM=60°,
∵在△MDN和△EDN中,=60°,
∴△MDN≌△EDN(SAS),
∴MN=NE=NC-CE=NC-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简单易懂股权入股合同
- 标准房屋买卖定金合同文本模板
- 图书出版合作方案
- 房产交易合同代理协议
- 钢材角钢购销合同范本
- 服装采购合同的合同签订流程
- 工程变更补充协议
- 房屋买卖定金合同模板在线示例
- 零售药店进货合同
- 砂石供应协议范本
- 水手工艺技能题
- 全县村民监督委员会主任培训会专题资料PPT课件
- 人工全髋关节置换术Harris评分表
- 5.DL647-2019电站锅炉压力容器检验规.doc
- DBB、DB、EPC模式的解析及其优缺点+第三小组
- 铁路工务线路工作业指导
- 小学美术《14虾和蟹(二)》PPT课件
- VI设计手册的设计与制作PPT课件
- 天然气管道冰堵发生原因及解堵措施
- 对降低产品成本途径问题的研究
- 工程安全监测
评论
0/150
提交评论