![2023年环保工程师及现场管理人员专业知识培训讲义_第1页](http://file4.renrendoc.com/view7/M01/14/3B/wKhkGWayV9qABDoYAAFg6-TEoOg025.jpg)
![2023年环保工程师及现场管理人员专业知识培训讲义_第2页](http://file4.renrendoc.com/view7/M01/14/3B/wKhkGWayV9qABDoYAAFg6-TEoOg0252.jpg)
![2023年环保工程师及现场管理人员专业知识培训讲义_第3页](http://file4.renrendoc.com/view7/M01/14/3B/wKhkGWayV9qABDoYAAFg6-TEoOg0253.jpg)
![2023年环保工程师及现场管理人员专业知识培训讲义_第4页](http://file4.renrendoc.com/view7/M01/14/3B/wKhkGWayV9qABDoYAAFg6-TEoOg0254.jpg)
![2023年环保工程师及现场管理人员专业知识培训讲义_第5页](http://file4.renrendoc.com/view7/M01/14/3B/wKhkGWayV9qABDoYAAFg6-TEoOg0255.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
环保工程师专业知识培训讲义
一、噪声与振动污染控制工程基础
二、物理污染控制工程实践
三、重要电磁污染源及其特性
四、电磁污染防治基本方法
第1章噪声与振动污染控制工程基础
1.1噪声与振动的计量和评价
复习规定:
1、熟悉躁声与振动的重要物理量和单位
2、掌握躁声与振动控制工程中的常用评价量
一、噪声和振动的基本概念
声音在人们的生活、工作中起着非常重要的作用。声音的本质就是气体、液体、固体介质中的质点
振动,声音的产生和传播都离不开介质的力学振动行为。声音有有利的一面,也有有害的一面。人们把
不和谐的、令人反感的声音称为噪声。要克制噪声的发生和传播,就必须了解噪声产生的因素和传播的
规律,也就必须具有振动基本知识。
振动是声音的来源。噪声是声音的一种,判断一个声音是否属于噪声,主观因素起决定性作用。生
理学将对人体有害或人们不需要的声音称为噪声。物理学将和谐的声音叫做乐音,不和谐的声音称为噪
声。噪声是各种不同频率和不同强度声音无规则的杂乱组合,给人烦躁的感觉;噪声的波形曲线通常是无
规则的。
1、声源:凡是能发出声音的振动体,都可以称为声源。声音是由于声源的振动而产生的。声源可
以是固体,液体或气体。
2、声波:物体在弹性介质中的机械振动可引起介质密度的改变,这种介质密度变化由近及远的传
播过程即为声波。声波产生和传播见332页图。声波产生的条件是声源(机械振动的物体)和弹性媒质。
声波可分为横波和纵波。声音的传播是物体振动状态的传播过程,即传播的是状态和能量,不是媒质自
身。
3、声场:由声波存在的媒质区域称为声场。可以分为自由声场、混响声场、扩散声场、远场和近
场等。
自由声场:无反射声存在的声场,也表达那些在各向同性的均匀媒质中界面的影响可以忽略的声场,
或者做了强吸声的消声室内的声场。
混响声场:在比较大的建筑围护结构内,各壁面存在多次强反射所形成的、以反射声为主的声场,
称为混响声场。
扩散声场:声能密度分布均匀,反射的传播方向为无规律分布的声场,称为扩散声场。混响声越强
烈的声场越接近扩散声场。
远场:指自由声场中到声源的距离每增长一倍,声压减少至一半的区域。远场内的媒质瞬时质点速
度与声压的相位一致。
近场:远场之内的区域为近场。近场内媒质瞬时质点速度与声压的相位不相同。
4、频率():单位时间内媒质质点振动的次数,单位为Hz。
周期():质点振动每往复一次所需的时间称为周期。单位so声音的频段范围划分见333页表5-l-lo
5、波长():在波的传播方向上,相邻两波峰(或相邻两波谷)之间的距离称为波长。波长也是质点的
振动通过一个周期声波传播的距离。单位是米(m)。
6、声速():声音在媒质中传播的速度。单位米/秒(m/s)。或声速是介质温度的函数,温度升高声
速增长;声速还随大气压强的增长而增长;空气声速受空气湿度影响;声速和媒质的种类有关。声速表见
334页。
7、声压:空气受到扰动时,空气压强就在大气压强附近做迅速起伏变化的波动,并改变为,将
声扰动产生的逾量压强称为声压。声压一般是时间和空间的函数。分为瞬时声压和有效声压。单位
lPa=lN/m2,微巴(),1微巴=0.1Pa。
一定期间间隔内瞬时声压对时间的均方根值称为有效声压。人耳对频率为1000Hz声音的可听阈(即
人耳刚刚能察觉到声音的存在)约为Pa;刚刚使人耳产生疼痛感觉的声压(痛阈声压)约为20Pa。
8、频带:把宽广的声音频率变化范围划分为若干较小的段落,叫做频带(频程)。任一频带都有上限
频率、下限频率(这两个频率又称截至频率)和中心频率,上、下限频率之间的频率范围称为频带宽度,
又称带宽。
倍频带(倍频程):假如两个频率相差一倍,称这两个频率之间相差一个倍频带,即这两个频率之比
为21,或;相差3个倍频带意味着两个频率之比为23,依此类推,相差n个倍频带就意味着两个频率之
比为。上限频率、下限频率和倍频带系数n有如下关系:或,一般越小,频带分的越细。
频带的中心频率是上、下限频率的几何平均值,在噪声测量中,通用的倍频带有n=l时的1/1倍
频带,简称倍频带;有n=l/2时的1/2倍频带,有n=l/3时的1/3倍频带等。其上限频率值、下限频率和
中心频率值值分别见337页表。
9、声功率:单位时间内声源辐射出来的总声能量称为声功率。瞬时声功率,它的平均声功率为:。
一个声源发出的声功率和声源做功发出的总功率是两个截然不同的概念,声功率只是声源总功率中
以声波形式辐射出去的一小部分功率。声源声功率强度的范围很广。
10、振动的位移、速度和加速度
设在一简谐振动中,A为振动的振幅,为角频率,为时间,则可将振动的位移表为、速度表为、
加速度表为。
振动位移在研究机械结构强度和变形时故意义;加速度在研究机械疲劳、冲击和评价振动对人的影响
时有重要意义;振动速度和结构辐射噪声大小有关联。
1、级和分贝
⑴级
人们听觉灵敏度与声波量之间的关系不是线性关系,而接近对数的关系。因此运用分贝作为单位进
行量度,既可对范围很大的声音强度进行对数压缩,并且也符合人耳对声音响应的灵敏限度。使用“级”
的概念用于量度声音的强弱。
声学量与同类基准(参考)量之比再取对数就是“级,,的概念。级的单位是奈培时,其对数取自然对数,
底为,符号是;级的单位是贝尔(Bell)时,其对数取以10为底的对数,符号是B。
(2)分贝
声学中将正比于声功率的两个同类声学量(如两个声压平方)之比,取以10为底的对数,再乘以10,
该参数的单位称为分贝,记为dB,。
2、声压级
噪声控制中,常用声压级来衡量声音的强弱。,基准声压声压级和声压的关系为,声压级变化20dB,
相称于声压值变化10倍;声压级变化40dB,相称于声压值变化100倍;
3、声功率级
声源的声功率级等于这个声源的声功率与基准声功率的取常用对数再乘以10o
基准声功率4、振动加速度级
振动加速度平方与基准加速度平方的比值取以10为底的对数乘以10,就得到振动加速度级,-
加速度有效值,简谐振动加速度有效值为加速度幅值的倍,;——基准加速度,。一般人刚刚感觉到
的垂直振动加速度级为,即60dBo
5、振动级
振动级指修正的加速度级,用表达,即:6、声压级的叠加、修正和平均
(1)声压级的叠加
①声压级相同的声音的叠加。不能将声压级做简朴的算术相加,能进行叠加运算的只能是声音的能
量,运用能量的相加进行声压级运算。
当N=2,即声压级相同的两个声音叠加,则总声压级为:
②声压级不相同的声音的叠加。两个声压级不相同的声音的叠加,并假设第一个声音的声压级大于
第二个声音的声压级,即,则总的声压级可以表达为:
(2)声压级的修正
2个声压级不相同的声音叠加时,假设第一个声音的声压级大于第二个声音的声压级,即,则总的
声压级可表达为:(3)声压级的平均
分贝是能量之比的对数关系,声压级的平均应取各声压级的能量平均的分贝数,,或者表达为:计
算N个声压级的平均值的方法是:一方面求出N个声压级的总声压级,然后减去。它是从声能平均的
原理推导出来的,在一般测量中,测量的各声压级差值假如在10dB的范围内,简化用算术平均法的误
差不大。
7、A声级
研究噪声对人体健康的危害及对噪声的防治,必须有噪声对人体影响限度的评价标准。对噪声的评
价常采用记录的方法,即依靠足够数的人们对噪声主观反映的对比性调查,得出记录的平均量。重要的
评价量有A声级、等效连续、噪声评价数NR和累积百分声级。
有关概念:
(1)响度级:单位是方(phon)。响度级就是指当选取1000Hz纯音做基准音时,凡是听起来和该纯音
同样响的声音,不管其声压级和频率是多少,它的响度级(方值)就等于该纯音的声压级数。
(2)等响曲线:345页图表达每一条曲线表达不同频率、不同声压级的纯音具有相同的响度级。
(3)频率计权:在测量仪器中,对不同频率的客观声压级人为地给予适当的增减,这种修正方法称为
频率计权,实现这种频率计权的网络称为计权网络。A、B、C、D4种计权网络,通过计权网络测得的
声级称为计权声级,是衡量噪声强弱的主观评价量。
A声级测量的结果与人耳对声音的响度感觉相近似,用A声级分贝数的大小对噪声排列顺序时,可
以较好反映人对各种噪声的主观评价。是目前评价噪声的重要指标。
复习规定:
1、熟悉声源及其分类
2、掌握点声源、线声源和面声源的基本特性
一、机械噪声源
由于机械设备运转时存在不平衡,各零部件之间因偏差或表面缺陷而互相撞击、摩擦产生的交变机
械作用力使设备金属板、轴承、齿轮或其他运动部位发生振动而辐射出噪声的声源称为机械噪声源。机
械噪声源又分为下列几种。
1、撞击噪声
因冲击力的作用会使机械产生较强的冲击噪声。如锻锤工作时其机械能分为四部分,第一部分做功、
第二部分转化为热能、第三部分通过基础以固体声的形式向四周地面传播,第四部分则转化为使机件产
生弹性形变的振动能。机件弹性形变振动能的一部分再以声波的形式向四周空间辐射,形成撞击噪声,
这种噪声还可以分解为撞击瞬间产生的喷射噪声、压力脉冲噪声和结构噪声。其中以结构噪声产生的影
响最大,辐射噪声的时间最长。
撞击噪声有以下特性:当撞击发生在较硬的光滑物体之间时,作用时间短,作用力大,则激励的频
带宽,激发物体自身振动方式就多,呈宽频带撞击噪声;假如撞击发生在较软的不光滑的物体之间时,作
用时间相对较长,作用力小,激励的频带窄,激发的振动方式少。
2、激发噪声
一般由旋转机械的周期性作用力产生。最简朴的周期力是由转动轴、飞轮等转动系统的静、动态不
平衡所引起的偏心力。这种作用力正比于转动系统的质量和静、动态的合成偏心距,也正比于转动角速
度的平方。当转动系统的转速达成其临界转速时,则该系统自身会产生极大的振动,并将振动力传递到
与其相连的其他机械部分,激起强烈的噪声。激发噪声会随着机件缝隙的存在、结构刚度不够或摩擦严
重而增大。
3、摩擦噪声
物体在一定的压力作用下互相接触并作相对运动时,物体之间产生摩擦,摩擦力以反运动方向在接
触面上作用于运动物体,从而激发物体振动而产生噪声。如汽车的刹车声等。
摩擦噪声中的重要是摩擦引起物体的张弛振动所激发的噪声,当振动频率与物体的固有振动频率相
同时,摩擦噪声将达成最大。
4、结构噪声
机械噪声是由于机械振动系统受迫振动和固有振动共同引起的,其中固有振动起了重要的作用,固
有振动频率是噪声的重要组成成分,而振动系统的固有振动频率取决于系统的结构特性和参数,所以称
为这种噪声为结构噪声。
任何机械部件都有它固有的振动方式,不同的振动方式相应于不同的振动频率。振动的方式、频率
与部件
或物料的物理性质、部件的结构形状和振动的边界条件有关。物料的弹性模量愈大,材料愈粗、厚,则
其固有频率愈高;材料的面积愈大,即棒愈长,板面积愈大,则其固有频率愈低。
5、齿轮噪声
啮合的齿轮对或齿轮组,由于互相碰撞或摩擦可激起齿轮体的振动,这种情况下辐射出来的噪声称
为齿轮噪声。
6、轴承噪声
轴承内相对运动的元件之间的摩擦和振动,或者转动部分的不平衡、相对运动元件之间的撞击等,
都会导致轴承噪声的产生。
二、空气动力性噪声源
由于机械零件和周边及封闭媒质(空气)交互作用而辐射出噪声的声源称为空气动力性噪声源。
1、喷射噪声:气流从管口以高速(介于声速与亚声速之间)喷射出来,由此而产生的噪声称为喷射噪
声,也称为喷注噪声或射流噪声。
2、涡流噪声:气流流经障碍物时,由于空气分子黏滞摩擦力的影响,具有一定速度的气流与障碍
物背后相对静止的气体互相作用,在障碍物的下游区形成带有涡旋的气流。这些涡旋中心的压强低于周
边介质的压强,每当一个涡旋脱落时,湍动气流就会出现一次压强跳变,这些跳变的压强通过周边介质
向外传播,并作用于障碍物。当湍动气流中压强脉动具有可听声的频率成分且强度足够大时,就能辐射
出噪声,称为涡流噪声或湍流噪声。
3,旋转气流噪声:旋转的空气动力机械(如飞机螺旋桨),旋转时与空气互相作用而连续产生压力脉
动,从而辐射的噪声称为旋转气流噪声。
4、燃烧噪声:各种燃料通过燃烧器与空气混合而燃烧,在燃烧过程中可产生强烈的噪声,这种噪
声称为燃烧噪声。气态燃料燃烧噪声有如下特性:
(1)燃烧吼声:可燃混合气体燃烧产生的噪声,称为燃烧吼声。燃烧吼声强度与燃烧强度成正比,燃
烧强度表达单位体积的热量释放率,当火焰燃烧速度保持不变而火焰体积增大时,则强度减少,燃烧吼
声也减少。
(2)振荡燃烧噪声:可燃混合气通过燃烧器燃烧时,由于燃烧气体的强烈振动而产生的噪声,称为振
荡燃烧噪声,也称为燃烧激励脉动噪声。
(3)工业燃烧系统的噪声:来自燃烧设备与燃烧过程的噪声,如可燃气及空气供应系统中的风机和阀
门噪声,可燃气与空气从燃烧器喷嘴喷出的喷射噪声,以及燃烧炉或燃烧器所在空间的共振声等,这些
噪声能与燃烧吼声和脉动噪声一起合成为燃烧系统的噪声。
复习规定:
1、熟悉声波在空气中传播的基本规律及衰减特性
2、了解声波的吸取、反射、透射及衍射规律
一、声波在空气中的传播和衰减
1、声波方程
声振动必须满足三个基本的物理定律,即牛顿第一定律、质量守恒定律以及描述压强、温度、体积
等状态参数的状态方程。应用这三个定律可以推导出声波传播中的连续性方程、运动方程和物态方程,
并进一步得到波动方程——、和对时间空间坐标的偏微分方程。作如下假设:①媒质为抱负流体,
即媒质中不存在黏滞性,声波传播时没有能量损失;②没有声扰动时,媒质在宏观上是静止的、均匀的,
因此媒质中静压强、静态密度都是常数;③声波传播时,媒质中稠密和稀疏的过程是绝热的;④假设是
小振幅声波,即满足:
声压比大气压要小得多,即;
质点的位移比波长要小得多,即;
质点振动速度比声速要小得多,即;
介质密度的相对变化要远远小于1,即。
上述假设称为抱负流体媒质小振幅假定。可以分别推导连续性方程、运动方程和物态方程。
(1)连续性方程:是物质不灭定律在流体运动描述中的数学应用。对体积元,单位时间流入的质量
与流出的质量之差等于该体积元内质量的变化率。由此可得体积元在x、y、z方向上质量的增量。
并由此得到单位时间内总的质量增量的矢量形式如下式,为拉氏算子。
(2)运动方程
运动方程是声压对于距离的梯度等于媒质密度和质点振动速度乘积的负值。在声场中取一体积元,
当有声波作用于体积元上,各方向的压强将发生变化。设体积元在静止时的压强为,密度为,声波产
生的瞬时声压为,因体积元足够小,可认为作用在各面的压力均匀。对方向,运用简朴力学分析和牛
顿第二定律得:
由于是小振幅声波,其密度的变化可忽略,即,可得声波在、、三个方向产生的加速度分别为:
式中:----瞬时声压,Pa;
、、——质点振动速度在、、三方向上的分量。
可得到运动方程,式中为拉普拉斯算符。
(3)物态方程
媒质在声波作用下,引起压缩、膨胀的交替变化,媒质的密度和压强都发生了变化,即媒质的状态
发生了变化。声波传播时,抱负状态下媒质的密度发生变化,而没有能量的损耗,即为等嫡绝热过程。
物态方程一般可写作:考虑绝热条件,上式简化为:抱负状态的物态方程为:(4)波动方程
联立抱负液体媒质中三个基本方程
:连续方程式、运动方程式和物态方程式,可推出抱负液体媒质中小振幅传播的、、中任意变量的
波动方程,得到以下三式:
声压波动方程:密度波动方程:振速波动方程:波动方程分别反映了声压、密度、振速随时空
变化的关系。式中拉普拉斯算子在直角坐标系中展开为:
推导波动方程时,只是从媒质的基本特性出发,运用牛顿第二定律、物质守恒定律和绝热压缩方程,
并未涉及声源及声场的具体情况,因此波动方程只反映声波在媒质传播过程的一般物理特性。
若声源为长圆柱形,其长度远大于波长,辐射的波阵面为同轴圆柱面,这种声波称为柱面声波。这时,
其中为圆柱长度,柱面波波动方程为:
对于远场,简谐柱面声波有:柱面波的声阻抗率在时,有:柱面声波的传播特性为:
①在抱负介质中,声压近似与距离的平方根成反比。
②介质声阻抗率为复数,当很大时,声抗分量可以忽略。
③在距离较大时,柱面波的声强,声强与距离成反比。每单位长度辐射的功率是。
(4)声源的指向性
声源在自由场中向外辐射声波时,声压级随方向的不同呈现不均匀的属性,称为声源的指向性。声
源指向性常用指向性因数或指向性指数来表达。指向性因数的定义是:声场中某点的声强,与同一
声功率声源在相同距离的同心球面上的声强之比。指向性因数无量纲。
式中:----任意方向上一定点的声强,;
—通过与该点同心球面上的平均声强,。
式中:——任意方向一定点上某频率的声压,dB;
----通过与该点同心球面上同一频率的声压,dBo
声源的指向性与声源的大小和辐射波长有关。当声源小到可视为点声源大小的限度时,以声源为中
心,声波以近似球面的形式向外均匀发散;当声源尺寸远大于声波波长时,如声波以声束形式,集中向一
个方向发散,则可认为该声波具有较强的指向性。
3、声波的衰减
声源发出的噪声在媒质中传播时发生反射、折射和衍射等现象,其声压或声强将随着传播距离的增
长而逐渐衰减。这些衰减通常涉及声能随距离的发散传播引起的衰减、空气吸取引起的衰减、地面吸
取引起的衰减、屏障引起的衰减和气象条件引起的衰减等,总衰减量可表达为:
⑴扩散引起的衰减
声源辐射噪声时,声波向四周八方传播,波阵面随距离增长而增大,这种由于扩散、声强随传播距
离增长而衰减的现象称扩散衰减。
①点声源:点声源在各向同性的均匀介质中传播时,声波的形式是以声源为中心的球面波,在同一
半径的球面上各点声波的相位相同。这种无指向性的声波,声强和声功率之间存在如下关系:位于刚
性地面上的声源产生的声波,因只能向一半的空间辐射,其接受点的声强可如下式计算:
常温时球面声波扩散衰减的表达式为:为接受点的声压级;为声源的声功率级;为接受点到中心的
距离;为修正系数,自由空间,半自由空间。
距声源中心半径分别为和的两点间的扩散衰减用声压级差表达为:假如声源具有指向性,则声
波的扩散衰减可表达为:②线声源:若每单位长线状声源的声功率为,在距离声源为点上的声压与
声功率的关系为:,用声压级表达为:,若声源无指向性,则,距离声源分别为和的两点间的声
压级差,或者说扩散衰减量为:③面声源:矩形面声源的情况较为常见,但其计算较复杂。
(2)空气吸取引起的衰减
声波传播时空气吸取衰减产生的因素是,声波在空气中传播时,空气中相邻质点的运动速度不同会
产生黏滞力,将使声能转变为热能消耗掉。声波传播时,空气介质发生压缩和膨胀的周期变化,相应的
发生温度的升高和减少,温度梯度的出现,将导致热传导方式的热互换,从而使声能转化为热能。空气
中重要的分子是双原子的氧分子和氮分子,一定状态下空气分子转动或振动时存在固有频率。无声时介
质分子微观运动处在一种动态平衡状态,当有声扰动且声波频率接近分子微观运动的频率时,使能量转
化平衡被打破,建立新的平衡需要一定的时间,此种由本来平衡到建立新的平衡的过程为“热驰豫过程”,
将使声能耗散而使声强衰减。上述因素使得声波在空气中传播时出现衰减,即空气吸取衰减,衰减与空
气温度、湿度和声波频率有关。
因空气吸取而引起的声强随距离的指数衰减关系为:(3)其他因素引起的衰减
①雪、雨、雾的影响
②温度梯度的影响
③风场的影响
④地面效应的影响
复习规定:
1、熟悉噪声及振动测量的基本规定、方法、仪器,以及背景噪声的修正方法。
2、掌握声级计、频带滤波器和环境振级计的使用。
噪声与振动控制的首要环节是噪声和振动的测量,只有通过对现场噪声和振动的科学测量,才干了
解各种噪声与振动源的属性和危害限度,为采用有效控制措施提供依据。根据工程技术的需要和现行国
家标准,有针对性介绍几种常用的噪声和振动测量方法。
一、基本测量仪器
1、声级计
声级计是噪声测量中常用的基本声学测量仪器。合用于室内噪声、环境噪声、机器噪声、建筑噪声
等各类噪声的测量。
(1)声级计的分类
按用途分类:
一类是用于测量稳态噪声(精密声级计和一般声级计);
另一类用于测量不稳态噪声和脉冲噪声(积分声级计和脉冲声级计)。
按体积大小分类:
台式声级计、便携式声级计和袖珍声级计。
按精度分四类:(依据国际电工委员会IEC615和国家标准GB3785)
四种类型声级计的性能指标具有同样的中心值,但允许误差有所不同。
类型精密级普通级
oIurn
误差(IEC)
(GB)
用途实验室标准仪器实验室精密测量现场测量噪声监测、普查
(2)声级计的结构和原理
声级计一般由传声器、放大器、衰减器、计权网络、检波器及指示器组成,见下图
①传声器:将声信号(声压)转化为电信号(电压)的换能元件。有晶体传声器、电动式传声器和驻极体
传声器等。电容式传声器具有动态范围宽、频率响应平直、灵敏度变化小、长时间稳定等优点,多用于
精密声级计和标准声级计中。
②放大器:将比较弱的电信号放大。声级计上所使用的放大器,规定具有较高的输入阻抗和较低的
输出阻抗,有合理的动态范围、较小的线性失真和满足需要的频率范围。涉及输入放大器和输出放大器。
③衰减器:声级计的量程范围一般为25〜130dB,检波器和模拟式指示器没有这么宽的量程范围,
通常使用衰减器将强信号做衰减,以避免放大器过载。衰减器分为输入衰减器和输出衰减器。为了提高
信噪比,输入衰减器位于输入放大器之前,输出衰减器接在输入放大器和输出放大器之间。为了提高信
噪比,一般测量时应将输出衰减器调至最大衰减档,在输入放大器但是载的前提下,而将输入衰减器调
至最小衰减档,使输入信号与输入放大器的电噪声有尽也许大的差值。
④计权网络:按IEC的规定,选取接近人耳对声音频率响应的几条曲线,设计了A、B、C、D四
种标准的计权网络。A计权网络频响曲线大约相称于40phon等响曲线的倒置曲线,从而使电信号的中、
低频段又较大的衰减,高频段也又一定限度的衰减。B计权网络约相称于70phon等响曲线的倒置曲线,
使电信号以低频段为主做了一定的衰减。C计权网络相称于lOOphon等响曲线的倒置曲线,在整个声频
范围内有近乎平直的响应,与人耳对高频声的响应近似相称。由A、B、C、D计权网络测得的读数称为
声级,声级是通过频率计权之后的声压级,注意与声压级相区别。
1、环境噪声测量
环境噪声的测量大部分是在现场进行的,条件复杂,声级变化范围大,因此所使用的仪器和方法均
有特殊规定。
(1)城市区域环境噪声的测量
①网格测量方法;②定点测量方法
(2)交通噪声的测量
①城市道路交通噪声测量:根据国家标准GB/T3222《声学环境噪声测量方法》规定进行。测点选
在两路口之间,路边人行道上,离车行道的路沿20cm处,离路口应大于50cm。垂直道路按噪声传播由
近及远方向设立测点。在规定期间内,各测点每次取样测量20min的等效A声级及累积百分声级,同
时记录车流量(辆/h)。或者连续采样200个瞬时A声级,每次采样时间间隔为5s,采用加权算术平均的
方法计算交通噪声的等效声级或累积百分数声级的平均值。将测得的200个数据按由大到小的顺序排列,
第个数据用表达。
等效声级:由于交通噪声的声级分布一般符合正态分布,也可采用近似方法求得:城市交通干线
算术平均等效声级计算如下式:式中:(km)全市或需要测量的交通干线的总长度;
其中第段干线的长度,(km);
第段干线或路段测得的等效声级或累积百分声级,(dB)A。
②铁路边界噪声测量:根据国家标准GB12525《铁路边界噪声限值及其测量方法》的规定。铁路边
界指距离铁路外侧轨道中心线30m处。若测量机车行驶时的辐射噪声,测点取离轨道中心7.5m,高度
距轨面1.5m处。选在无雨、无雪天气进行。
(3)机场周边飞机噪声测量方法
国家标准GB9661《机场周边飞机噪声测量方法》针对机场周边飞机起飞、降落或低空飞行时所产
生的噪声测量规定了具体的操作方法。
①测量条件:测量要满足无雨、无雪,地面上10m高处的风速不大于5m/s,相对湿度为30%—90%
的气候条件。测量传声器应安装在开阔平坦处,高于地面1.2m,离其他反射面1m以上,注意避开高电
线和大型变压器。
②测量方法:
A、精密测量:传声器通过声级计将飞机噪声信号送到测量录音机记录在磁带上,然后在实验室按
原速回放录音信号并对信号进行频谱分析。
B、简易测量:声级计接声级记录器,或用声级计和测量录音机。
2、工业公司噪声测量
(1)生产环境(车间)噪声测量
测量时车间环境应牌正常的作业状态,测量位置为操作人员的作业位置。传声器须置于作业人员的
耳朵附近。作业人员操作位置不固定期,则须在作业过程中经常活动的范围内选择若干测点,稳态噪声
取各测点的测量平均值;对于非稳态噪声,取各测点等效声级的测量平均值。数据记录形式见下表。
振动是产生噪声的主线因素,要消除噪声就必须消除或减小噪声源的振动。测量参数的选择重要取决于
研究对象的特性。一般有如下的选用原则:
振动位移:多用于研究结构的强度和变形,如建筑结构、桥梁、水坝等的变形破坏等;
振动速度:振动速度的平方与能量成正比,可直接反映振动系统的动能和所辐射的噪声,常用机械
振动的测量。
振动加速度:人体振动对加速度比较敏感,因此评价人体振动的响应都用加速度。由于加速度能直
接表达作用力和负载,也常用于研究机械的疲劳、冲击等方面。
振动对人体的影响与振动的加速度有效值、振动频率、振动时间、振动方向和振动部位有关。评价
振动对人体影响的基本量是频率计权加速度或频率计权加速度级由于实际碰到的环境振动大都不是
稳定的,而是随时间变化,因此经常需要测量等效连续振级。其定义为,在某一测点上,用某段时间
能量平均方法,将变化的振级以一个恒定振级来表达该段时间内的振级大小,称为等效连续振级。
1、城市区域环境振动测量方法
(1)测量条件:在振源处在正常工作状态及无强风、无强电磁场、地震、剧烈的温度梯度变化或其他
非振动污染源引起的干扰时进行测量。用于测量环境振动的仪器,其性能须符合ISO/DP8041有关条款
的规定。
(2)测量方法:测点置于建筑物室外0.5m以内振动敏感处,并将拾振器平稳地置于平坦、坚实的地
面上,避免置于如地毯、草地、沙地或雪地等松软的地面上。
2、振源测量方法
测量振源振级的重要目的是了解振动源的参数,例如参数大小、频率和时间等特性,振源测量的内
容,除垂向振级外,根据需要还可测量水平振级,垂直和水平方向的加速度级,倍频程或1/3倍频程的
振动频谱分析,振动传播的指向性和振动强度随距离衰减状况等。
⑴声阻抗
由于吸声系数重要反映入射声和反射声能量的数值关系,它们的位相关系并没有反映出来,在这方
面声阻抗也许更有价值。介质在某一表面上的声阻抗由该介质表面上的平均有效声压和通过该表面上
的有效体积速度的比值来表达:声阻抗是一个复数,其实部为声阻,虚部为声抗。介质中某一点的有
效声压和该点的有效质点速度的比值称为声阻抗率:吸声材料的声阻抗和吸声系数同样,可以运用
驻波管进行测量,直接由测量结果画出材料的声阻抗图。材料的表面声阻抗和垂直入射吸声系数关系
如下:(2)流阻、空隙率
流阻、空隙率是表征多孔性吸声材料的重要微观物理参数,它可以帮助众从材料的微观结构入手,
改善多孔性吸声材料
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论