空间计量经济学模型的估计与检验_第1页
空间计量经济学模型的估计与检验_第2页
空间计量经济学模型的估计与检验_第3页
空间计量经济学模型的估计与检验_第4页
空间计量经济学模型的估计与检验_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

不同类型空间计量经济学模型的估计方法很多,本节并不是系统的讨论,只是选择若干模型的估计方法加以介绍。不同类型的空间模型分别描述了空间实质相关和空间扰动相关,那么检验是否存在空间实质相关时需要在空间扰动相关存在与否的假设下进行,反之亦然。所以,在本节模型检验部分,首先在各种假设下构造检验方法,最后提出一个判断准则。第2页/共29页一、空间滞后模型的IV和ML估计

第3页/共29页1、空间滞后模型IV估计

空间滞后模型(空间自回归模型)的解释变量中出现随机变量,普通最小二乘估计(OLS)将不再适用,工具变量估计(IV)、广义矩估计(GMM)和最大似然估计(ML)是合适的估计方法。

第4页/共29页如何选择工具变量Q?仅仅利用样本信息构造工具变量。利用备选的空间矩阵作为工具变量。

第5页/共29页2、空间滞后模型ML估计

ML估计量等价于GLS估计量。ML估计的一阶极值条件第6页/共29页第7页/共29页估计步骤:分布采用OLS估计模型(1)和(2),得到相应的估计量和残差;将残差估计量带入似然函数,估计ρ;利用ρ的估计量,估计随机项协方差矩阵;采用GLS重新估计模型(1)和(2);利用估计结果重新估计ρ;……

第8页/共29页二、空间误差模型的ML估计

第9页/共29页描述空间扰动相关的空间误差模型(空间残差自回归模型)的随机误差项出现了空间相关性,若直接采用OLS估计,虽然参数估计具有无偏一致性,但不是有效估计。应该采用ML估计或GMM估计。第10页/共29页空间误差模型的ML估计,实际上等价于一个EGLS估计。

第11页/共29页估计步骤和迭代过程与空间滞后模型ML估计类似。

第12页/共29页三、空间计量经济学模型的LM检验

第13页/共29页1、不存在空间自回归时空间残差相关的LM检验

不存在空间自回归时,空间残差相关检验的原假设是模型残差不存在空间相关。

第14页/共29页利用对数似然函数,写出Lagranian函数为:

第15页/共29页该检验统计量有两个备择假设,也就是说,该统计量对于空间残差自相关和空间残差移动平均两种空间效应均有检验效力。第16页/共29页2、存在空间自回归时空间残差相关的LM检验

存在空间自回归时,空间残差相关检验的原假设仍然是模型残差不存在空间相关。

第17页/共29页检验统计量的构造原理与前述类似。统计量为:

原假设中模型的OLS估计量第18页/共29页该检验统计量有两个备择假设,对于空间残差自相关和空间残差移动平均两种空间效应均有检验效力。

第19页/共29页3、不存在空间残差相关时空间自回归效应

的LM检验

在不存在空间残差相关时,检验模型是否存在空间实质相关。检验的原假设和备择假设:如果原假设成立,则模型是经典单方程线性模型;如果原假设被拒绝,则可以确定模型的设定形式为空间自回归模型。

第20页/共29页原假设中模型的OLS估计量模型检验的对数似然函数第21页/共29页4、存在空间残差相关性时空间自回归效应

的LM检验

当模型存在空间残差相关性时,检验是否存在空间自回归效应。检验的原假设和备择假设分别是:

如果原假设成立,则模型是空间残差自回归模型;如果原假设被拒绝,则可以确定模型的设定形式为空间自回归—残差自回归模型,模型不仅存在空间残差相关,也存在空间实质相关。

第22页/共29页检验的统计量:

该检验统计量对于原假设中模型的残差结构为空间移动平均效应也同样适用。

第23页/共29页5、判别准则

上述检验都是在一定的假设前提下进行的。检验1是在不存在空间自回归的假设下检验是否存在空间残差相关;(统计量称为LMERR

)检验2是在存在空间自回归的假设下检验是否存在空间残差相关;(统计量称为R-LMERR)

检验3是在不存在空间残差相关的假设下检验是否存在空间自回归效应;(统计量称为LMLAG)

检验4是在存在空间残差相关的假设下检验是否存在空间自回归效应。(统计量称为R-LMLAG

)由于事先无法根据先验经验判断这些假设的真伪,有必要构建一种判别准则,以决定哪种空间模型更加符合客观实际。第24页/共29页判别准则:如果在空间效应的检验中发现LMLAG较之LMERR在统计上更加显著,且R-LMLAG显著而R-LMERR不显著,则可以断定适合的模型是空间滞后模型;相反,如果LMERR比LMLAG在统计上更加显著,且R-LMERR显著而R-LMLAG不显著,则可以断定空间误差模型是恰当的模型。第25页/共29页四、空间残差相关性的Moran’I检验

第26页/共29页1、Moran’I统计量

该检验的原假设是模型不存在空间相关性。如果原假设成立,可以利用OLS方法(或者IV等其他估计方法)估计模型,得到一个估计残差e。如果怀疑模型存在以空间矩阵W表示的空间结构,则可以构造一个Moran’I算子:

空间矩阵W中所有元素之和空间矩阵行标准化相当于模型参数γ的OLS估计如果原假设成立,则有Moran’I统计量

第27页/共29页2、关于Moran’I检验的讨论利用Moran’I统计量进行假设检验不存在明确的备择假设。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论