2019-2020学年高中数学课时分层作业26两角和与差的正切含解析苏教版必修_第1页
2019-2020学年高中数学课时分层作业26两角和与差的正切含解析苏教版必修_第2页
2019-2020学年高中数学课时分层作业26两角和与差的正切含解析苏教版必修_第3页
2019-2020学年高中数学课时分层作业26两角和与差的正切含解析苏教版必修_第4页
2019-2020学年高中数学课时分层作业26两角和与差的正切含解析苏教版必修_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE课时分层作业(二十六)两角和与差的正切(建议用时:60分钟)[合格基础练]一、选择题1.若0<α<eq\f(π,2),0<β<eq\f(π,2),且tanα=2,tanβ=3,则tan(α+β)=()A.1B.-1C.eq\f(1,5) D.-eq\f(1,5)B[∵tanα=2,tanβ=3,∴tan(α+β)=eq\f(tanα+tanβ,1-tanαtanβ)=eq\f(2+3,1-2×3)=-1.]2.已知tanα+tanβ=2,tan(α+β)=4,则tanαtanβ=()A.2B.eq\f(3,2)C.1D.eq\f(1,2)D[tan(α+β)=eq\f(tanα+tanβ,1-tanαtanβ)=eq\f(2,1-tanαtanβ)=4,∴1-tanαtanβ=eq\f(1,2),tanαtanβ=eq\f(1,2).]3.已知A,B都是锐角,且tanA=eq\f(1,3),sinB=eq\f(\r(5),5),则A+B=()A.eq\f(π,4)B.eq\f(π,3)C.eq\f(π,2)D.eq\f(5π,6)A[∵B∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2))),sinB=eq\f(\r(5),5),∴cosB=eq\f(2\r(5),5).∴tanB=eq\f(1,2).∴tan(A+B)=eq\f(tanA+tanB,1-tanAtanB)=eq\f(\f(1,3)+\f(1,2),1-\f(1,3)×\f(1,2))=1.又A,B∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2))),∴A+B∈(0,π).∴A+B=eq\f(π,4).]4.已知tanα,tanβ是方程x2+6x+7=0的两个实根,则tan(α-β)=()A.eq\f(\r(2),2)B.eq\f(\r(2),4)C.-eq\f(\r(2),4) D.±eq\f(\r(2),4)D[由已知tanα=-3+eq\r(2),tanβ=-3-eq\r(2)或tanα=-3-eq\r(2),tanβ=-3+eq\r(2),∴tan(α-β)=eq\f(tanα-tanβ,1+tanαtanβ)=±eq\f(\r(2),4).]5.若taneq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))=2,则eq\f(1,2sinαcosα+cos2α)=()A.eq\f(1,3)B.eq\f(1,2)C.eq\f(2,3)D.1C[由taneq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))=eq\f(1+tanα,1-tanα)=2,得tanα=eq\f(1,3),∴eq\f(1,2sinαcosα+cos2α)=eq\f(sin2α+cos2α,2sinαcosα+cos2α)=eq\f(tan2α+1,2tanα+1)=eq\f(2,3).]二、填空题6.eq\f(tan55°-tan385°,1-tan-305°tan-25°)=________.eq\f(\r(3),3)[原式=eq\f(tan55°-tan25°,1-tan305°tan25°)=eq\f(tan55°-tan25°,1+tan55°tan25°)=tan(55°-25°)=tan30°=eq\f(\r(3),3).]7.在△ABC中,若0<tanBtanC<1,则△ABC是________三角形.钝角[易知tanB>0,tanC>0,B,C为锐角.eq\f(sinBsinC,cosBcosC)<1,∴cosBcosC>sinBsinC.∴cosBcosC-sinBsinC>0,∴cos(B+C)>0,即cosA<0,故A为钝角.]8.已知sinα=eq\f(3,5),α是第二象限角,且tan(α+β)=1,则tanβ的值为________.7[∵sinα=eq\f(3,5),α是第二象限角,∴cosα=-eq\f(4,5),∴tanα=-eq\f(3,4).∴tanβ=eq\f(tanα+β-tanα,1+tanα+βtanα)=eq\f(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,4))),1+1×\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,4))))=eq\f(1+\f(3,4),1-\f(3,4))=7.]三、解答题9.求下列各式的值:(1)tan17°+tan28°+tan17°tan28°;(2)tan70°-tan10°-eq\r(3)tan70°tan10°.[解](1)因为tan(17°+28°)=eq\f(tan17°+tan28°,1-tan17°tan28°),所以tan17°+tan28°=tan45°(1-tan17°tan28°)=1-tan17°tan28°,所以tan17°+tan28°+tan17°tan28°=1.(2)因为tan60°=tan(70°-10°)=eq\f(tan70°-tan10°,1+tan70°tan10°),所以tan70°-tan10°=eq\r(3)+eq\r(3)tan10°tan70°,所以tan70°-tan10°-eq\r(3)tan10°tan70°=eq\r(3).10.若△ABC的三内角满足:2B=A+C,且A<B<C,tanAtanC=2+eq\r(3),求角A,B,C的大小.[解]由题意知:eq\b\lc\{\rc\(\a\vs4\al\co1(A+B+C=180°,,2B=A+C,))解之得:B=60°且A+C=120°,∴tan(A+C)=tan120°=-eq\r(3)=eq\f(tanA+tanC,1-tanAtanC),又∵tanAtanC=2+eq\r(3),∴tanA+tanC=tan(A+C)·(1-tanAtanC)=tan120°(1-2-eq\r(3))=-eq\r(3)(-1-eq\r(3))=3+eq\r(3).∴tanA,tanC可作为一元二次方程x2-(3+eq\r(3))x+(2+eq\r(3))=0的两根,又∵0<A<B<C<π,∴tanA=1,tanC=2+eq\r(3).即A=45°,C=75°.所以A,B,C的大小分别为45°,60°,75°.[等级过关练]1.设向量a=(cosα,-1),b=(2,sinα),若a⊥b,则taneq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))等于()A.-eq\f(1,3)B.eq\f(1,3)C.-3 D.3B[a·b=2cosα-sinα=0,得tanα=2.taneq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))=eq\f(tanα-tan\f(π,4),1+tanαtan\f(π,4))=eq\f(1,3).]2.在△ABC中,tanA+tanB+tanC=3eq\r(3),tan2B=tanAtanC,则角B=()A.30°B.45°C.60° D.75°C[因为A+B+C=180°,所以tan(A+C)=-tanB,又tanA+tanB+tanC=3eq\r(3),所以tanA+tanC=3eq\r(3)-tanB,又tan2B=tanAtanC,所以由tan(A+C)=eq\f(tanA+tanC,1-tanAtanC)得-tanB=eq\f(3\r(3)-tanB,1-tan2B),所以-tanB(1-tan2B)=3eq\r(3)-tanB,所以tan3B=3eq\r(3),所以tanB=eq\r(3).又0°<B<180°,所以B=60°.]3.A,B,C是△ABC的三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实数根,则△ABC是________三角形.(填“锐角”“钝角”或“直角”)钝角[由已知得eq\b\lc\{\rc\(\a\vs4\al\co1(tanA+tanB=\f(5,3),,tanA·tanB=\f(1,3),))∴tan(A+B)=eq\f(tanA+tanB,1-tanA·tanB)=eq\f(\f(5,3),1-\f(1,3))=eq\f(5,2),在△ABC中,tanC=tan[π-(A+B)]=-tan(A+B)=-eq\f(5,2)<0,∴C是钝角,∴△ABC是钝角三角形.]4.已知α,β均为锐角,且tanβ=eq\f(cosα-sinα,cosα+sinα),则tan(α+β)=________.1[∵tanβ=eq\f(1-tanα,1+tanα),∴tanα+tanβ=1-tanαtanβ,∴tan(α+β)=eq\f(tanα+tanβ,1-tanαtanβ)=1.]5.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为eq\f(\r(2),10),eq\f(2\r(5),5).求:(1)tan(α+β)的值;(2)α+2β的大小.[解]由已知得cosα=eq\f(\r(2),10),cosβ=eq\f(2\r(5),5),又α,β是锐角,则sinα=eq\r(1-cos2α)=eq\f(7\r(2),10),sinβ=eq\r(1-cos2β)=eq\f(\r(5),5).所以tanα=eq\f(sinα,cosα)=7,tanβ=eq\f(sinβ,cos

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论