版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(高二数学高分突破)第9章统计章末题型归纳总结(原卷版)(高二数学高分突破)第9章统计章末题型归纳总结(原卷版)/(高二数学高分突破)第9章统计章末题型归纳总结(原卷版)第9章统计章末题型归纳总结模块一:本章知识思维导图模块二:典型例题经典题型一:线性回归方程经典题型二:非线性回归方程经典题型三:独立性检验经典题型四:统计的综合应用模块三:数学思想方法①分类讨论思想②转化与化归思想③特殊到一般思想模块一:本章知识思维导图模块二:典型例题经典题型一:线性回归方程例1.(2024·高三·上海闵行·阶段练习)某公司为了增加某商品的销售利润,调查了该商品投入的广告费用:(单位:万元)与销售利润(单位:万元)的相关数据,如表所示,根据表中数据,得到经验回归方程,则下列命题正确的是(请填写序号)广告费用3458销售利润4578①;
②;③直线必过点;④直线必过点例2.(2024·高二·江西·开学考试)商家为了解某品牌取暖器的月销售量Y(台)与月平均气温之间的关系,随机统计了某4个月该品牌取暖器的月销售量与当月平均气温,其数据如下表;平均气温()10741月销售量(台)26375582由表中数据算出线性回归方程中的,当平均气温为时,此品牌取暖器的月销售量为台(结果保留整数).例3.(2024·高三·全国·专题练习)某种产品2014年到2018年的年投资金额(万元)与年利润(万元)的数据统计如下,由散点图知,与之间的关系可以用线性回归模型拟合,已知5年利润的平均值是4.7.年份20142015201620172018年投资金额万元12345年利润万元2.42.76.47.9(1)求表中实数的值;(2)求关于的线性回归方程.参考公式:回归直线方程中的斜率和截距的最小二乘估计公式分别为,.例4.(2024·高二·全国·课前预习)为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量(单位:)与样本对原点的距离(单位:)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中)660(1)利用样本相关系数的知识,判断与哪一个更适宜作为平均金属含量关于样本对原点的距离的回归方程类型?(2)根据(1)的结果回答下列问题:(i)建立关于的回归方程;(ii)样本对原点的距离时,金属含量的预报值是多少?例5.(2024·高三·上海浦东新·阶段练习)环境监测部门为调研汽车流量对空气质量的影响,在某监测点统计每日过往的汽车流量(单位:辆)和空气中的的平均浓度(单位:).调研人员采集了50天的数据,制作了关于的散点图,并用直线与将散点图分成如图所示的四个区域Ⅰ、Ⅱ、Ⅲ、Ⅳ,落入对应区域的样本点的个数依次为6,20,16,8.(1)完成下面的列联表,并判断至少有多大把握认为"平均浓度不小于与"汽车日流量不小于1500辆”有关;汽车日流量汽车日流量合计的平均浓度的平均浓度合计(2)经计算得回归方程为,且这50天的汽车日流量的标准差,的平均浓度的标准差.①求相关系数,并判断该回归方程是否有价值;②若这50天的汽车日流量满足,试推算这50天的日均浓度的平均数.(精确到0.1)参考公式:,其中.0.1000.0500.0100.0012.7063.8416.63510.828回归方程,其中.相关系数.若,则认为与有较强的线性相关性.例6.(2024·广东广州·二模)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区植物覆盖面积与某种野生动物数量的关系,将其分成面积相近的若干个地块,从这些地块中随机抽取20个作为样区,调查得到样本数据,其中,和,分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量(单位:只),并计算得.(1)求样本的相关系数(精确到0.01),并推断这种野生动物的数量y(单位:只)和植物覆盖面积x(单位:公顷)的相关程度;(2)已知20个样区中有8个样区的这种野生动物数量低于样本平均数,从20个样区中随机抽取2个,记抽到这种野生动物数量低于样本平均数的样区的个数为X,求随机变量X的分布列.附:相关系数经典题型二:非线性回归方程例7.(2024·广东广州·一模)某校数学建模兴趣小组收集了一组恒温动物体重(单位:克)与脉搏率(单位:心跳次数/分钟)的对应数据,根据生物学常识和散点图得出与近似满足(为参数).令,,计算得,,.由最小二乘法得经验回归方程为,则的值为;为判断拟合效果,通过经验回归方程求得预测值,若残差平方和,则决定系数.(参考公式:决定系数)例8.(2024·高三·重庆·开学考试)当前,人工智能技术以前所未有的速度迅猛发展,并逐步影响我们的方方面面,人工智能被认为是推动未来社会发展和解决人类面临的全球性问题的重要手段.某公司在这个领域逐年加大投入,以下是近年来该公司对产品研发年投入额(单位:百万元)与其年销售量y(单位:千件)的数据统计表.12345611.53612(1)公司拟分别用①和②两种方案作为年销售量关于年投入额的回归分析模型,请根据已知数据,确定方案①和②的经验回归方程;(计算过程保留到小数点后两位,最后结果保留到小数点后一位)(2)根据下表数据,用决定系数(只需比较出大小)比较两种模型的拟合效果哪种更好,并选择拟合精度更高的模型,预测年投入额为百万元时,产品的销售量是多少?经验回归方程残差平方和参考公式及数据:,,,,,,,,.例9.(2024·高二·黑龙江大兴安岭地·期中)碳排放是引起全球气候变暖问题的主要原因.2009年世界气候大会,中国做出了减少碳排放的承诺,2010年被誉为了中国低碳创业元年.2020年中国政府在联合国大会发言提出:中国二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.碳中和是指主体在一定时间内产生的二氧化碳或温室气体排放总量,通过植树造林、节能减排等形式,以抵消自身产生的二氧化碳或温室气体排放量,实现正负抵消,达到相对"零排放”.如图为本世纪来,某省的碳排放总量的年度数据散点图.该数据分为两段,2010年前该省致力于经济发展,没有有效控制碳排放;从2010年开始,该省通过各种举措有效控制了碳排放.用x表示年份代号,记2010年为.用h表示2010年前的的年度碳排放量,y表示2010年开始的年度碳排放量.表一:2011~2017年某省碳排放总量年度统计表(单位:亿吨)年份2011201220132014201520162017年份代号x1234567年度碳排放量y(单位:亿吨)2.542.6352.722.802.8853.003.09(1)若关于x的线性回归方程为,根据回归方程估计若未采取措施,2017年的碳排放量;并结合表一数据,说明该省在控制碳排放举措下,减少排碳多少亿吨?(2)根据,设2011~2017年间各年碳排放减少量为,建立z关于x的回归方程.①根据,求表一中y关于x的回归方程(精确到0.001);②根据①所求的回归方程确定该省大约在哪年实现碳达峰?参考数据:.参考公式:.例10.(2024·四川内江·一模)某企业为响应国家号召,汇聚科研力量,加强科技创新,准备加大研发资金投入,为了解年研发资金投入额(单位:亿元)对年盈利额(单位:亿元)的影响,通过对"十二五”和"十三五”规划发展10年期间年研发资金投入额和年盈利额数据进行分析,建立了两个函数模型:;,其中、、、均为常数,为自然对数的底数,令,,经计算得如下数据:(1)请从相关系数的角度,分析哪一个模型拟合度更好?(2)根据(1)的选择及表中数据,建立关于的回归方程.(系数精确到0.01)附:相关系数回归直线中:,.例11.(2024·高三·四川成都·期末)为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量(单位:)与样本对原点的距离(单位:m)的数据,并作了初步处理,得到了下面的一些统计理的值.(表中,)697.900.21600.1414.1226.13(1)利用样本相关系数的知识,判断与哪一个更适宜作为平均金属含量关于样本对原点的距离的回归方程类型?(2)根据(1)的结果回答下列问题:①建立关于的回归方程;②样本对原点的距离时,金属含量的预报值是多少?附:对于一组数据,其线性相关系数,其回归直线的斜率和截距的最小二乘估计分别为:,.例12.(2024·高三·全国·专题练习)数独是源自18世纪瑞士的一种数学游戏,玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(3×3)内的数字均含1~9,且不重复.数独爱好者小明打算报名参加"丝路杯”全国数独大赛初级组的比赛.参考数据:17500.370.55参考公式:对于一组数据,其经验回归方程的斜率和截距的最小二乘估计分别为,.(1)赛前小明进行了一段时间的训练,每天解题的平均速度y(秒/题)与训练天数x(天)有关,经统计得到如下数据:x(天)1234567y(秒/题)910800600440300240210现用作为回归方程模型,请利用表中数据,求出该回归方程;(,用分数表示)(2)小明和小红玩"对战赛”,每局两人同时开始解一道数独题,先解出题的人获胜,不存在平局,两人约定先胜3局者赢得比赛.若小明每局获胜的概率为,且各局之间相互独立,设比赛X局后结束,求随机变量X的分布列及均值.例13.(2024·高三·湖南衡阳·阶段练习)为了加快实现我国高水平科技自立自强,某科技公司逐年加大高科技研发投入.下图1是该公司2013年至2022年的年份代码x和年研发投入y(单位:亿元)的散点图,其中年份代码1∼10分别对应年份2013∼2022.
根据散点图,分别用模型①,②作为年研发投入y(单位:亿元)关于年份代码x的经验回归方程模型,并进行残差分析,得到图2所示的残差图.结合数据,计算得到如下表所示的一些统计量的值:752.2582.54.512028.35表中,.(1)根据残差图,判断模型①和模型②哪一个更适宜作为年研发投入y(单位:亿元)关于年份代码x的经验回归方程模型?并说明理由;(2)(i)根据(1)中所选模型,求出y关于x的经验回归方程;(ii)设该科技公司的年利润(单位:亿元)和年研发投入y(单位:亿元)满足(且),问该科技公司哪一年的年利润最大?附:对于一组数据,,…,,其经验回归直线的斜率和截距的最小二乘估计分别为,.经典题型三:独立性检验例14.(2024·宁夏银川·一模)有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:优秀非优秀总计甲班10b乙班c30合计附:P(K2≥k0)0.050.0250.0100.005k03.8415.0246.6357.879已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是(
)A.列联表中c的值为30,b的值为35B.列联表中c的值为15,b的值为50C.根据列联表中的数据,若按97.5%的可靠性要求,能认为"成绩与班级有关系”D.根据列联表中的数据,若按97.5%的可靠性要求,不能认为"成绩与班级有关系”例15.(2024·高二·江西九江·期末)假设有两个变量和,它们的取值分别为和,其列联表为(
)根据以下选项中的数据计算的值,其中最大的一组为(
)A.B.C.D.例16.(2024·高二·山东滨州·期末)针对时下的"短视频热”,某高校团委对学生性别和喜欢短视频是否有关联进行了一次调查,其中被调查的男生、女生人数均为人,男生中喜欢短视频的人数占男生人数的,女生中喜欢短视频的人数占女生人数的.零假设为:喜欢短视频和性别相互独立.若依据的独立性检验认为喜欢短视频和性别不独立,则的最小值为()附:,附表:0.050.013.8416.635A.7 B.8 C.9 D.10例17.(2024·高三·全国·专题练习)2020年以来,为了抗击新冠肺炎疫情,教育部出台了"停课不停学”政策,全国各地纷纷采取措施,通过网络进行教学,为莘莘学子搭建学习的平台.在线教育近几年蓬勃发展,为学生家长带来了便利,节省了时间,提供了多样化选择,满足了不同需求,也有人预言未来的教育是互联网教育.与此同时,网课也存在以下一些现象,自觉性不强的孩子网课学习的效果大打折扣,授课教师教学管理的难度增大.基于以上现象,开学后某学校对本校课学习情况进行抽样调查,抽取25名女生,25名男生进行测试、问卷等,调查结果形成以下2×2列联表,通过数据分析,认为认真参加网课与学生性别之间(
)认真上网课不认真上网课合计男生52025女生151025合计203050参考数据:0.050.010.0013.8416.63510.828A.不能根据小概率的的独立性检验认为两者有关B.根据小概率的的独立性检验认为两者有关C.根据小概率的的独立性检验认为两者有关D.根据小概率的的独立性检验认为两者无关经典题型四:统计的综合应用例18.(2024·高二·福建漳州·期中)某工厂引进新的生产设备,为对其进行评估,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:直径/mm5859616263646566676869707173合计件数11356193318442121100经计算,样本的平均值,标准差,以频率值作为概率的估计值.(1)为评估设备对原材料的利用情况,需要研究零件中某材料含量和原料中的该材料含量之间的相关关系,现取了8对观测值,求与的线性回归方程.(2)为评判设备生产零件的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率);①;②;③.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级.(3)将直径小于等于或直径大于的零件认为是次品.从样本中随意抽取2件零件,再从设备的生产流水线上随意抽取2件零件,计算其中次品总数的数学期望.附:①对于一组数据,其回归直线的斜率和截距的最小二乘法估计公式分别为,;②参考数据:,,,.例19.(2024·高三·广东深圳·期中)红蜘蛛是柚子的主要害虫之一,能对柚子树造成严重伤害,每只红蜘蛛的平均产卵数y(个)和平均温度x(℃)有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.
(1)根据散点图判断,与(其中…为自然对数的底数)哪一个更适合作为平均产卵数y(个)关于平均温度x(℃)的回归方程类型?(给出判断即可,不必说明理由)(2)由(1)的判断结果及表中数据,求出y关于x的回归方程.(计算结果精确到0.1)附:回归方程中,,参考数据()5215177137142781.33.6(3)根据以往每年平均气温以及对果园年产值的统计,得到以下数据:平均气温在22℃以下的年数占60%,对柚子产量影响不大,不需要采取防虫措施;平均气温在22℃至28℃的年数占30%,柚子产量会下降20%;平均气温在28℃以上的年数占10%,柚子产量会下降50%.为了更好的防治红蜘蛛虫害,农科所研发出各种防害措施供果农选择.在每年价格不变,无虫害的情况下,某果园年产值为200万元,根据以上数据,以得到最高收益(收益=产值-防害费用)为目标,请为果农从以下几个方案中推荐最佳防害方案,并说明理由.方案1:选择防害措施A,可以防止各种气温的红蜘蛛虫害不减产,费用是18万;方案2:选择防害措施B,可以防治22℃至28℃的蜘蛛虫害,但无法防治28℃以上的红蜘蛛虫害,费用是10万;方案3:不采取防虫害措施.例20.(2024·福建·模拟预测)为了解学生中午的用穊方式(在食堂就餐或点外卖)与最近食堂间的距离的关系,某大学于某日中午随机调查了2000名学生,获得了如下频率分布表(不完整):学生与最近食堂间的距离合计在食堂就餐0.150.100.000.50点外卖0.200.000.50合计0.200.150.001.00并且由该频率分布表,可估计学生与最近食堂间的平均距离为(同一组数据以该组数据所在区间的中点值作为代表).(1)补全频率分布表,并判断是否有99.9%的把握认为学生中午的用餐方式与学生距最近食堂的远近有关(当学生与最近食堂间的距离不超过时,认为较近,否则认为较远):(2)已知该校李明同学的附近有两家学生食堂甲和乙,且他每天中午都选择食堂甲或乙就餐.(i)一般情况下,学生更愿意去饭菜更美味的食堂就餐.某日中午,李明准备去食堂就餐.此时,记他选择去甲食堂就餐为事件,他认为甲食堂的饭菜比乙食堂的美味为事件,且、均为随机事件,证明::(ii)为迎接为期7天的校庆,甲食堂推出了如下两种优惠活动方案,顾客可任选其一.①传统型优惠方案:校庆期间,顾客任意一天中午去甲食堂就餐均可获得元优惠;②"饥饿型”优惠方案:校庆期间,对于顾客去甲食堂就餐的若干天(不必连续)中午,第一天中午不优惠(即"饥饿”一天),第二天中午获得元优惠,以后每天中午均获得元优惠(其中,为已知数且).校庆期间,已知李明每天中午去甲食堂就餐的概率均为(),且是否去甲食堂就餐相互独立.又知李明是一名"激进型”消费者,如果两种方案获得的优惠期望不一样,他倾向于选择能获得优惠期望更大的方案,如果两种方案获得的优惠期望一样,他倾向于选择获得的优惠更分散的方案.请你据此帮他作出选择,并说明理由.附:,其中.0.100.0100.0012.7066.63510.828例21.(2024·全国·模拟预测)某校20名学生的数学成绩和知识竞赛成绩如下表:学生编号12345678910数学成绩100999693908885838077知识竞赛成绩29016022020065709010060270学生编号11121314151617181920数学成绩75747270686660503935知识竞赛成绩4535405025302015105计算可得数学成绩的平均值是,知识竞赛成绩的平均值是,并且,,.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到).(2)设,变量和变量的一组样本数据为,其中两两不相同,两两不相同.记在中的排名是第位,在中的排名是第位,.定义变量和变量的"斯皮尔曼相关系数”(记为)为变量的排名和变量的排名的样本相关系数.(i)记,.证明:.(ii)用(i)的公式求这组学生的数学成绩和知识竞赛成绩的"斯皮尔曼相关系数”(精确到).(3)比较(1)和(2)(ii)的计算结果,简述"斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.;;.例22.(2024·湖南益阳·模拟预测)为了研究学生每天整理数学错题情况,某课题组在某市中学生中随机抽取了100名学生调查了他们期中考试的数学成绩和平时整理数学错题情况,并绘制了下列两个统计图表,图1为学生期中考试数学成绩的频率分布直方图,图2为学生一个星期内整理数学错题天数的扇形图.若本次数学成绩在110分及以上视为优秀,将一个星期有4天及以上整理数学错题视为"经常整理”,少于4天视为"不经常整理”.已知数学成绩优秀的学生中,经常整理错题的学生占.数学成绩优秀数学成绩不优秀合计经常整理不经常整理合计(1)求图1中的值以及学生期中考试数学成绩的上四分位数;(2)根据图1、图2中的数据,补全上方列联表,并根据小概率值的独立性检验,分析数学成绩优秀与经常整理数学错题是否有关?(3)用频率估计概率,在全市中学生中按"经常整理错题”与"不经常整理错题”进行分层抽样,随机抽取5名学生,再从这5名学生中随机抽取2人进行座谈.求这2名同学中经常整理错题且数学成绩优秀的人数X的分布列和数学期望.附:例23.(2024·吉林·三模)2022年11月20日,卡塔尔足球世界杯正式开幕,世界杯上的中国元素随处可见.从体育场建设到电力保障,从赛场内的裁判到赛场外的吉祥物都是中国制造,为卡塔尔世界杯提供了强有力的支持.国内也再次掀起足球热潮.某地足球协会组建球队参加业余比赛,该足球队教练组为了考查球员甲对球队的贡献,作出如下数据统计(甲参加过的比赛均分出了输赢):球队输球球队赢球总计甲参加23032甲未参加81018总计104050(1)根据小概率值的独立性检验,能否认为该球队赢球与甲球员参赛有关联;(2)从该球队中任选一人,A表示事件"选中的球员参赛”,B表示事件"球队输球”.与的比值是选中的球员参赛对球队贡献程度的一项度量指标,记该指标为R.①证明:;②利用球员甲数据统计,给出,的估计值,并求出R的估计值.附:.参考数据:a0.050.010.0050.0013.8416.6357.87910.828模块三:数学思想方法①分类讨论思想例24.(2024·河南·校联考三模)某企业对目前销售的四种产品进行改造升级,经过改造升级后,企业营收实现翻番,现统计了该企业升级前后四种产品的营收占比,得到如下饼图:下列说法不正确的是(
)A.产品升级后,产品的营收是升级前的4倍B.产品升级后,产品的营收是升级前的2倍C.产品升级后,产品的营收减少D.产品升级后,产品营收的总和占总营收的比例不变例25.(2024·山东青岛·高二山东省青岛第一中学校考期中)下图是某地区2009年至2018年芯片产业投资额(单位:亿元)的散点图,为了预测该地区2019年的芯片产业投资额,建立了与时间变量的四个线性回归模型.根据2009年至2018年的数据建立模型①;根据2010年至2017年的数据建立模型②;根据2011年至2016年的数据建立模型③;根据2014年至2018年的数据建立模型④.则预测值更可靠的模型是(
)A.① B.② C.③ D.④例26.(2024·贵州·高三统考期末)某校从2011年到2018年参加"北约”,"华约”考试而获得加分的学生(每位学生只能参加"北约”,"华约”一种考试)人数可以通过以下表格反映出来.(为了方便计算,将2011年编号为1,2012年编号为2,依此类推……)年份x12345678人数y23447766(1)据悉,该校2018年获得加分的6位同学中,有1位获得加20分,2位获得加15分,3位获得加10分,从该6位同学中任取两位,记该两位同学获得的加分之和为X,求X的分布列及期望.(2)根据最近五年的数据,利用最小二乘法求出y与x之间的线性回归方程,并用以预测该校2019年参加"北约”,"华约”考试而获得加分的学生人数.(结果要求四舍五入至个位)参考公式:②转化与化归思想例27.(2024·吉林长春·东北师大附中校考模拟预测)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的"量”换算成费用,称之为"失效费”.某种机械设备的使用年限(单位:年)与失效费(单位:万元)的统计数据如下表所示:使用年限(单位:年)24568失效费(单位:万元)34567(1)根据上表数据,计算与的相关系数,并说明与的线性相关性的强弱.(已知:,则认为与线性相关性很强;,则认为与线性相关性一般;,则认为与线性相关性较弱)(r的结果精确到0.0001)(2)求关于的线性回归方程,并估算该种机械设备使用10年的失效费.,,.例28.(2024·广东广州·高二统考期末)如图是某地区2000年至2019年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2020年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2019年的数据(时间变量的值依次为,,,)建立模型①:;根据2010年至2019年的数据(时间变量的值依次为,,,)建立模型②:.(1)分别利用这两个模型,求该地区2020年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.例29.(2024·陕西西安·高二西安中学校考期中)随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月(20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度生态农业园区场地租赁及农产品销售合同3篇
- 二零二五年度出国定居文化体验与活动组织合同4篇
- 2025年鲁教版必修2物理上册月考试卷
- 2025劳动合同法无故旷工
- 2025室内装饰装修合伙合作合同
- 2025年度电器产品节能补贴申请与使用合同4篇
- 2025翡翠买卖合同书
- 业务外包合作协议 完整版
- 2025年车辆配件生产厂股权转让及销售渠道合作协议4篇
- 2025年度瓷砖产品线上展示与虚拟现实销售合同3篇
- 杜仲叶药理作用及临床应用研究进展
- 4S店售后服务6S管理新规制度
- 高性能建筑钢材的研发与应用
- 无线广播行业现状分析
- 汉语言沟通发展量表(长表)-词汇及手势(8-16月龄)
- 高速公路相关知识讲座
- 儿科关于抗生素使用的PDCA
- 商务服务业的市场细分和定位策略
- 财政学论文我国财政支出存在的问题及改革建议
- 小学生必备古诗
- 手术室护理实践指南2023年
评论
0/150
提交评论