2023届陕西省西安市师大附中数学八上期末经典试题含解析_第1页
2023届陕西省西安市师大附中数学八上期末经典试题含解析_第2页
2023届陕西省西安市师大附中数学八上期末经典试题含解析_第3页
2023届陕西省西安市师大附中数学八上期末经典试题含解析_第4页
2023届陕西省西安市师大附中数学八上期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.计算等于()A. B. C. D.2.在,,,,中,是分式的有()A.1个 B.2个 C.3个 D.4个3.不等式2x-1≤5的解集在数轴上表示为()A. B. C. D.4.若关于x的分式方程=a无解,则a为()A.1 B.-1 C.±1 D.05.下列各组数中,勾股数的是()A.6,8,12 B.0.3,0.4,0.5 C.2,3,5 D.5,12,136.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处若的周长为18,的周长为6,四边形纸片ABCD的周长为A.20 B.24 C.32 D.487.下列命题是真命题的是()A.如果,那么B.三个内角分别对应相等的两个三角形相等C.两边一角对应相等的两个三角形全等D.如果是有理数,那么是实数8.在下列“禁毒”“和平”“志愿者”“节水”这四个标志中,属于轴对称图形的是()A. B. C. D.9.如图,在▱ABCD中,AB=2.6,BC=4,∠ABC的平分线交CD的延长线于点E,则DE的长为()A.2.6 B.1.4 C.3 D.210.将代数式的分子,分母都扩大5倍,则代数式的值()A.扩大5倍 B.缩小5倍 C.不变 D.无法确定二、填空题(每小题3分,共24分)11.如果关于x的方程2无解,则a的值为______.12.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.13.3184900精确到十万位的近似值是______________.14.如图,长方形的面积为,延长至点,延长至点,已知,则的面积为(用和的式子表示)__________.15.计算:=_______.16.如图,在菱形ABCD中,∠BAD=45°,DE是AB边上的高,BE=2,则AB的长是____.17.已知:如图,中,,外角,则____________________18.若实数,则x可取的最大整数是_______.三、解答题(共66分)19.(10分)某公司对应聘者进行面试,按专业知识、工作经验、仪表形象给应聘者打分,这三个方面的重要性之比为6:3:1.对应聘的王丽、张瑛两人的打分如下表:如果两人中只录取一人,根据表格确定个人成绩,谁将被录用?王丽张瑛专业知识1418工作经验1616仪表形象181220.(6分)计算:(1)计算:(2)因式分解x2(x-2)+(2-x)21.(6分)如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠1.22.(8分)某中学开展“数学史”知识竞赛活动,八年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)请计算八(1)班、八(2)班两个班选出的5名选手复赛的平均成绩;(2)请判断哪个班选出的5名选手的复赛成绩比较稳定,并说明理由?23.(8分)(1)仔细观察如图图形,利用面积关系写出一个等式:a2+b2=.(2)根据(1)中的等式关系解决问题:已知m+n=4,mn=﹣2,求m2+n2的值.(3)小明根据(1)中的关系式还解决了以下问题:“已知m+=3,求m2+和m3+的值”小明解法:请你仔细理解小明的解法,继续完成:求m5+m﹣5的值24.(8分)已知7x3y2与一个多项式之积是28x4y2+7x4y3﹣21x3y2,则这个多项式是______.25.(10分)因雾霾天引发的汽车尾气污染备受关注,由此汽车限号行驶也成为人们关注的焦点,限行期间为方便市民出行,某路公交车每天比原来的运行增加15车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?26.(10分)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.

参考答案一、选择题(每小题3分,共30分)1、A【分析】直接利用二次根式的乘除运算法则化简求出即可.【详解】===故选A.【点睛】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.2、C【分析】根据分式的定义逐一判断即可.【详解】解:分式:形如,其中都为整式,且中含有字母.根据定义得:,,是分式,,是多项式,是整式.故选C.【点睛】本题考查的是分式的定义,掌握分式的定义是解题的关键,特别要注意是一个常数.3、A【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【详解】解:解不等式得:x≤3,所以在数轴上表示为:故选:A.【点睛】不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.4、C【分析】分式方程无解包含整式方程无解,以及分式方程有增根.【详解】在方程两边同乘(x+1)得:x−a=a(x+1),整理得:x(1−a)=2a,当1−a=0时,即a=1,整式方程无解,则分式方程无解;当1−a=0时,,当时,分式方程无解解得:a=−1,故选C.【点睛】此题考查分式方程的解,解题关键在于掌握运算法则5、D【解析】根据勾股定理的逆定理分别进行分析,从而得到答案.【详解】A、∵52+42≠62,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵2,3,5是无理数,∴这组数不是勾股数;D、∵52+122=132,∴这组数是勾股数.故选D.【点睛】此题主要考查了勾股数的定义,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则△ABC是直角三角形.6、B【解析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.

所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.

故矩形ABCD的周长为24cm.

故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.7、D【分析】根据绝对值的意义、全等三角形的判定、实数的分类等知识对各选项逐一进行判断即可.【详解】A.如果,那么,故A选项错误;B.三个内角分别对应相等的两个三角形不一定全等,故B选项错误;C.两边一角对应相等的两个三角形不一定全等,当满足SAS时全等,当SSA时不全等,故C选项错误;D.如果是有理数,那么是实数,正确,故选D.【点睛】本题考查了真假命题的判断,涉及了绝对值、全等三角形的判定、实数等知识,熟练掌握和灵活运用相关知识是解题的关键.8、B【分析】轴对称图形是指将图形沿着某条直线对折,直线两边的图形能够完全重叠,根据定义判断即可.【详解】A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.【点睛】本题考查轴对称图形的识别,熟记轴对称图形的定义是关键.9、B【分析】由平行四边形ABCD中,BE平分∠ABC,可证得△BCE是等腰三角形,继而利用DE=CE-CD,求得答案.【详解】解:四边形是平行四边形,,,.平分,,,,.故选:.【点睛】此题考查了平行四边形的性质,能证得△BCE是等腰三角形是解此题的关键.10、C【分析】分析:根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【详解】如果把分式

中的x

、y

的值都扩大5

倍可得,则分式的值不变,故选;C.【点睛】本题考查了分式的基本性质,解题的关键是灵活运用分式的基本性质.二、填空题(每小题3分,共24分)11、1或1.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于2.【详解】去分母得:ax﹣1=1(x﹣1)ax﹣1x=﹣1,(a﹣1)x=﹣1,当a﹣1=2时,∴a=1,此时方程无解,满足题意,当a﹣1≠2时,∴x,将x代入x﹣1=2,解得:a=1,综上所述:a=1或a=1.故答案为:1或1.【点睛】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.12、1【解析】试题分析:根据定义,α=1000,β=500,则根据三角形内角和等于1800,可得另一角为1,因此,这个“特征三角形”的最小内角的度数为1.13、【分析】根据科学记数法和近似值的定义进行解答.【详解】【点睛】考点:近似数和有效数字.14、【分析】画出图形,由三角形面积求法用边长表示出,进行运算整体代入即可.【详解】解:设,,,,∴==∵如图:,∴=,∵,,∴【点睛】本题主要考查了多项式乘法与图形面积,解题关键是用代数式正确表示出图形面积.15、【分析】根据单项式乘以多项式的运算法则,把单项式分别和多项式的每一项相乘计算即可.【详解】,故答案为:.【点睛】本题考查了单项式乘以多项式,熟练掌握运算法则是解题的关键.16、.【分析】设AB=x,根据勾股定理列方程为:AD2=AE2+DE2,则x2=(x−2)2+(x−2)2,解方程可解答.【详解】解:设AB=x.∵四边形ABCD是菱形,∴AD=AB=x.∵DE是AB边上的高,∴∠AED=90°.∵∠BAD=45°,∴∠BAD=∠ADE=45°,∴AE=ED=x﹣2,由勾股定理得:AD=AE2+DE2,∴x2=(x﹣2)2+(x﹣2)2,解得:x1=4+2,x2=4﹣2,∵BE=2,∴AB>2,∴AB=x=4+2.故答案为:4+2.【点睛】本题考查了菱形的性质,等腰直角三角形的性质和勾股定理,熟练掌握菱形的性质是解题的关键.17、65°70°【分析】利用外角性质求出∠C,再利用邻补角定义求出∠ABC.【详解】∵∠ABD=∠A+∠C,,,∴∠C=∠ABD-∠A=65°,∵∠ABC+∠ABD=180,∴∠ABC=180-∠ABD=70°故答案为:65°,70°.【点睛】此题考查外角性质,邻补角定义,会看图找到各角度的关系,由此计算得出所求的角度是解题的关键.18、2【分析】根据,得出x可取的最大整数是2【详解】∵∴x可取的最大整数是2【点睛】本题考查了无理数的大小比较,通过比较无理数之间的大小可得出x的最大整数值三、解答题(共66分)19、张瑛.【分析】根据加权平均数的计算公式分别计算即可.【详解】解:王丽的成绩为:(分),张瑛的成绩为:(分),由于张瑛的分数比王丽的高,所以应录用张瑛.【点睛】本题考查求加权平均数和运用加权平均数做决策.掌握加权平均数的计算公式是解决此题的关键.20、(1)-5;(2)(x-2)(x+1)(x-1)【分析】(1)根据乘方的意义、立方根的定义和算术平方根的定义计算即可;(2)先提取公因数,然后利用平方差公式因式分解即可.【详解】解:(1)解:原式=1-4-2=-5(2)解:原式=(x-2)(x2-1)=(x-2)(x+1)(x-1)【点睛】此题考查的是实数的混合运算和因式分解,掌握乘方的意义、立方根的定义、算术平方根的定义、利用提公因式法和公式法因式分解是解决此题的关键.21、见解析【解析】试题分析:由同旁内角互补,两直线平行得到AB∥CD,进而得到∠ABC=∠BCD,再由∠P=∠Q,得到PB∥CQ,从而有∠PBC=∠QCB,根据等式性质得到∠1=∠1.试题解析:证明:∵∠ABC+∠ECB=180°,∴AB∥CD,∴∠ABC=∠BCD.∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠QCB,∴∠ABC﹣∠PBC=∠BCD﹣∠QCB,即∠1=∠1.点睛:本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.22、(1)八(1)班和八(2)班两个班选出的5名选手复赛的平均成绩均为85分;(2)八(1)班的成绩比较稳定,见解析【分析】(1)根据算术平均数的概念求解可得;(2)先计算出两个班的方差,再根据方差的意义求解可得.【详解】(1)=(75+80+85+85+100)=85(分),=(70+100+100+75+80)=85(分),所以,八(1)班和八(2)班两个班选出的5名选手复赛的平均成绩均为85分.(2)八(1)班的成绩比较稳定.理由如下:s2八(1)=[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,s2八(2)=[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,∵s2八(1)<s2八(2)∴八(1)班的成绩比较稳定.【点睛】本题考查了平均数和方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23、(1)(a+b)2﹣2ab;(2)20;(3)1【分析】(1)观察原式为阴影部分的面积,再用大矩形的面积减去两个空白矩形的面积也可表示阴影部分面积,进而得出答案;(2)运用(1)中的结论进行计算便可把原式转化为(m+n)2﹣2mn进行计算;(3)把原式转化为(m2+m﹣2)(m3+m﹣3)﹣(m+m﹣1)进行计算.【详解】解:(1)根据图形可知,阴影部分面积为a2+b2,阴影部分面积可能表示为(a+b)2﹣2ab,∴a2+b2=(a+b)2﹣2ab,故答案为:(a+b)2﹣2ab;(2)m2+n2=(m+n)2﹣2mn=42﹣2×(﹣2)=20;(3)m5+m﹣5=(m2+m﹣2)(m3+m﹣3)﹣(m+m﹣1)=7×18﹣3=1.【点睛】本题主要考查了转化的思想,乘法公式的应用,模仿样例,灵活进行整式的恒等变形是解决本题的关键.24、4x+xy-3【分析】根据7x3y2与一个多项式之积是28x4y2+7x4y3﹣21x3y2,用28x4y2+7x4y3﹣21x3y2除以7x3y2,用多项式除以单项式的法则,即可得到答案.【详解】解:∵7x3y2与一个多项式之积是28x4y2+7x4y3﹣21x3y2,∴(28x4y2+7x4y3﹣21x3y2)÷7x3y2=(4x+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论