版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列运算正确的是()A.=-2 B.=3 C.=0.5 D.2.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使PA+PB最短.下面四种选址方案符合要求的是()A. B.C. D.3.下列等式变形是因式分解的是()A.﹣a(a+b﹣3)=a2+ab﹣3aB.a2﹣a﹣2=a(a﹣1)﹣2C.﹣4a2+9b2=﹣(2a+3b)(2a﹣3b)D.2x+1=x(2+)4.某学校计划挖一条长为米的供热管道,开工后每天比原计划多挖米,结果提前天完成.若设原计划每天挖米,那么下面所列方程正确的是()A. B.C. D.5.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是()A.8,15,17 B.4,6,8 C.3,4,5 D.6,8,106.下列语句中,是命题的为().A.延长线段AB到C B.垂线段最短 C.过点O作直线a∥b D.锐角都相等吗7.如图,在中,,,于点,的平分线分别交、于、两点,为的中点,的延长线交于点,连接,下列结论:①为等腰三角形;②;③;④.其中正确的结论有()A.个 B.个 C.个 D.个8.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果,那么与是对顶角.③三角形的一个内角大于任何一个外角.④如果,那么.A.个 B.个 C.个 D.个9.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是()A.10 B.8 C.6 D.410.矩形的面积为18,一边长为,则另一边长为()A. B. C. D.24二、填空题(每小题3分,共24分)11.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=50,∠CAP=______.12.计算:_______________.13.若分式的值为0,则的值为______.14.如图,△ABC中,∠C=90°,∠ABC=30°,BC=1,点D是边BC上一动点,以AD为边作等边△ADE,使点E在∠C的内部,连接BE.下列结论:①AC=1;②EB=ED;③当AD平分∠BAC时,△BDE是等边三角形;④动点D从点C运动到点B的过程中,点E的运动路径长为1.其中正确的是__________.(把你认为正确结论的序号都填上)15.分式的最简公分母为_____.16.如图7,已知P、Q是△ABC的边BC上的两点,且BP=QC=PQ=AP=AQ,则∠BAC=________17.如图,小明把一副含45°角和30°角的直角三角板如图摆放,则∠1=____°.18.光的速度约为3×105km/s,太阳系以外距离地球最近的一颗恒星(比邻星)发出的光需要4年的时间才能到达地球.若一年以3×107s计算,则这颗恒星到地球的距离是_______km.三、解答题(共66分)19.(10分)在平面直角坐标系中,一次函数yx+4的图象与x轴和y轴分别交于A、B两点.动点P从点A出发,在线段AO上以每秒1个单位长度的速度向点O作匀速运动,到达点O即停止运动.其中A、Q两点关于点P对称,以线段PQ为边向上作正方形PQMN.设运动时间为秒.如图①.(1)当t=2秒时,OQ的长度为;(2)设MN、PN分别与直线yx+4交于点C、D,求证:MC=NC;(3)在运动过程中,设正方形PQMN的对角线交于点E,MP与QD交于点F,如图2,求OF+EN的最小值.20.(6分)和都是等腰直角三角形,.(1)如图1,点、分别在、上,则、满足怎样的数量关系和位置关系?(直接写出答案)(2)如图2,点在内部,点在外部,连结、,则、满足怎样的数量关系和位置关系?请说明理由.(3)如图3,点、都在外部,连结、、、,与相交于点.已知,,设,,求与之间的函数关系式.21.(6分)甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)(本题满分10分)路程/千米运费(元/吨、千米)甲库乙库甲库乙库A地20151212B地2520108(1)设甲库运往A地水泥吨,求总运费(元)关于(吨)的函数关系式;(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?22.(8分)在中,,,点是线段上一动点(不与,重合).(1)如图1,当点为的中点,过点作交的延长线于点,求证:;(1)连接,作,交于点.若时,如图1.①______;②求证:为等腰三角形;(3)连接CD,∠CDE=30°,在点的运动过程中,的形状可以是等腰三角形吗?若可以,请求出的度数;若不可以,请说明理由.23.(8分)如图,在平面直角坐标系中,直线l1:y=x+6与y轴交于点A,直线l2:y=kx+b与y轴交于点B,与l1相交于C(﹣3,3),AO=2BO.(1)求直线l2:y=kx+b的解析式;(2)求△ABC的面积.24.(8分)我们定义:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,4,,因为,所以这个三角形是奇异三角形.(1)根据定义:“等边三角形是奇异三角形”这个命题是______命题(填“真”或“假命题”);(2)在中,,,,,且,若是奇异三角形,求;(3)如图,以为斜边分别在的两侧作直角三角形,且,若四边形内存在点,使得,.①求证:是奇异三角形;②当是直角三角形时,求的度数.25.(10分)为做好食堂的服务工作,某学校食堂对学生最喜爱的菜肴进行了抽样调查,下面试根据收集的数据绘制的统计图(不完整):(1)参加抽样调查的学生数是______人,扇形统计图中“大排”部分的圆心角是______°;(2)把条形统计图补充完整;(3)若全校有3000名学生,请你根据以上数据估计最喜爱“烤肠”的学生人数.26.(10分)如图,在平面直角坐标系xOy中,直线与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线AB与直线DC相交于点E.(1)求AB的长;(2)求△ADE的面积:(3)若点M为直线AD上一点,且△MBC为等腰直角三角形,求M点的坐标.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据二次根式的性质进行化简.【详解】A、,故原计算错误;B、,故原计算错误;C、,故原计算错误;D、,正确;故选:D.【点睛】本题考查二次根式的性质,熟练掌握相关知识是解题的关键,比较基础.2、A【分析】根据轴对称的性质和线段的性质即可得到结论.【详解】解:根据题意得,在公路l上选取点P,使PA+PB最短.则选项A符合要求,故选:A.【点睛】本题考查轴对称的性质的运用,最短路线问题数学模式的运用,也考查学生的作图能力,运用数学知识解决实际问题的能力.3、C【分析】根据因式分解的定义逐个判断即可.【详解】解:A、右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;B、右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、符合因式分解的定义,是因式分解,故本选项符合题意;D、右边不是几个整式的积的形式(含有分式),不是因式分解,故本选项不符合题意;故选:C.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.4、A【分析】若计划每天挖x米,则实际每天挖x+5米,利用时间=路程÷速度,算出计划的时间与实际时间作差即可列出方程.【详解】原计划每天挖x米,则实际每天挖x+5米,那么原计划所有时间:;实际所有时间:.提前10天完成,即.故选A.【点睛】本题考查分式方程的应用,关键在于理解题意找出等量关系.5、B【解析】试题解析:A.
故是直角三角形,故错误;B.
故不是直角三角形,正确;C.
故是直角三角形,故错误;D.
故是直角三角形,故错误.故选B.点睛:如果三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.6、B【分析】根据命题的定义对各个选项进行分析从而得到答案.【详解】A,不是,因为不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题;故选B.【点睛】此题主要考查学生对命题与定理的理解及掌握情况.7、D【分析】①由等腰直角三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质可得到∠AEF=∠AFE,可判断△AEF为等腰三角形,于是可对①进行判断;求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断②③;连接EN,只要证明△ABE≌△NBE,即可推出∠ENB=∠EAB=90°,由此可知判断④.【详解】解:∵等腰Rt△ABC中,∠BAC=90°,AD⊥BC,∴∠BAD=∠CAD=∠C=45°,BD=AD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,∴∠AEF=∠AFE,∴AF=AE,即△AEF为等腰三角形,所以①正确;∵为的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°−67.5°=22.5°=∠MBN,在△FBD和△NAD中,∴△FBD≌△NAD(ASA),∴DF=DN,AN=BF,所以②③正确;∵AM⊥EF,∴∠BMA=∠BMN=90°,∵BM=BM,∠MBA=∠MBN,∴△MBA≌△MBN,∴AM=MN,∴BE垂直平分线段AN,∴AB=BN,EA=EN,∵BE=BE,∴△ABE≌△NBE,∴∠ENB=∠EAB=90°,∴EN⊥NC,故④正确,故选:D.【点睛】本题考查了全等三角形的判定与性质、三角形外角性质、三角形内角和定理、垂直平分线的性质,能正确证明推出两个三角形全等是解此题的关键,主要考查学生的推理能力.8、A【分析】正确的命题是真命题,根据定义解答即可.【详解】①两条直线被第三条直线所截,内错角相等,是假命题;②如果,那么与是对顶角,是假命题;③三角形的一个内角大于任何一个外角,是假命题;④如果,那么,是真命题,故选:A.【点睛】此题考查真命题,熟记真命题的定义,并熟练掌握平行线的性质,对顶角的性质,三角形外角性质,不等式的性质是解题的关键.9、C【解析】延长BD交AC于点E,则可知△ABE为等腰三角形,则S△ABD=S△ADE,S△BDC=S△CDE,可得出S△ADC=S△ABC.【详解】解:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴BD=DE,∴S△ABD=S△ADE,S△BDC=S△CDE,∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,∴S△ADC=S△ABC=×12=6(m2),故答案选C.【点睛】本题主要考查等腰三角形的判定和性质,由BD=DE得到S△ABD=S△ADE,S△BDC=S△CDE是解题的关键.10、C【分析】根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.【详解】解:∵矩形的面积为18,一边长为,
∴另一边长为=,
故选:C.【点睛】本题考查矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解题的关键.二、填空题(每小题3分,共24分)11、40°【分析】过点P作PF⊥AB于F,PM⊥AC于M,PN⊥CD于N,根据三角形的外角性质和内角和定理,得到∠BAC度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得到答案.【详解】解:过点P作PF⊥AB于F,PM⊥AC于M,PN⊥CD于N,如图:设∠PCD=x,∵CP平分∠ACD,∴∠ACP=∠PCD=x,PM=PN,∴∠ACD=2x,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PM=PN,∵∠BPC=50°,∴∠ABP=∠PBC=,∴,∴,∴,在Rt△APF和Rt△APM中,∵PF=PM,AP为公共边,∴Rt△APF≌Rt△APM(HL),∴∠FAP=∠CAP,∴;故答案为:40°;【点睛】本题考查了三角形的内角和定理,三角形的外角性质,角平分线的性质,以及全等三角形的判定和性质,解题的关键是熟练掌握所学的知识进行解题,正确求出是关键.12、【分析】先把化成,再根据同底数幂的乘法计算即可.【详解】解:原式=.【点睛】本题是对同底数幂乘法的考查,熟记同底数幂相乘,底数不变,指数相加.13、1【分析】根据分式的值为0的条件和分式有意义条件得出4-x1=0且x+1≠0,再求出即可.【详解】解:∵分式的值为0,
∴4-x1=0且x+1≠0,
解得:x=1,
故答案为:1.【点睛】本题考查分式的值为零的条件和分式有意义的条件,能根据题意得出4-x1=0且x+1≠0是解题的关键.14、②③④【分析】作EF⊥AB垂足为F,连接CF,可证△EAF≌△DAC,推出点E在AB的垂直平分线上,根据三线合一可证为等腰三角形,即可得到EB=ED,由AD平分∠BAC计算∠CAD=∠EAB=∠EBA=30°,从而证得△BDE是等边三角形,在点D从点A移动至点C的过程中,点E移动的路线和点D运动的路线相等,由此即可解决问题.【详解】解:∵△ABC中,∠C=90°,∠ABC=30°,BC=1,∴,故①错误;如图,作EF⊥AB垂足为F,连接CF,∵∠ACB=90°,∠ABC=30°,∴∠BAC=60°,∵△ADE是等边三角形,∴AE=AD=ED,∠EAD=60°,∴∠EAD=∠BAC,∴∠EAF=∠DAC,在△EAF和△DAC中,,∴△EAF≌△DAC,∴AF=AC,EF=CD,∵,∴,∴F为AB的中点,∴EF为的中线,又∵,∴,∵,∴,故②正确;∵AD平分∠BAC,∴,∴,∵,∴,∵,∴,又∵,∴是等边三角形,故③正确;∵,,∴点E在AB的垂直平分线上,∴在点D从点C移动至点B的过程中,点E移动的路线和点D运动的路线相等,∴在点D从点C移动至点B的过程中,点E移动的路线为1,故④正确;故答案为:②③④.【点睛】本题考查直角三角形性质,等边三角形性质,利用这些知识证明三角形全等为关键,掌握直角三角形和等边三角形的性质为解题关键.15、10xy2【解析】试题解析:分母分别是故最简公分母是故答案是:点睛:确定最简公分母的方法是:
(1)取各分母系数的最小公倍数;
(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;
(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.16、120°【解析】识记三角形中的角边转换因为PQ=AP=AQ△APQ为等边三角形∠APQ=60°它互补角∠APB=120°BP="AP"△APB为等腰三角形∠PAB=30°同理∠CAQ=30°所以∠BAC=∠CAQ+∠PAB+∠PAQ=30°+30°+60°=120°17、1【分析】根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可.【详解】解:如图所示,∵∠BAC=30°,∠ACB=90°,∴∠1=∠ACB+∠BAC=90°+30°=1°,故答案为:1.【点睛】本题考查的是三角形的内角和定理以及三角形外角的性质的运用,熟知三角形的一个外角等于与它不相邻的两个内角的和是解答此题的关键.18、3.6×1013【解析】根据题意列出算式,再根据单项式的运算法则进行计算.【详解】依题意,这颗恒星到地球的距离为4×3×107×3×105,=(4×3×3)×(107×105),=3.6×1013km.故答案为:3.6×1013.【点睛】本题考查了根据实际问题列算式的能力,科学记数法相乘可以运用单项式相乘的法则进行计算.三、解答题(共66分)19、(1)2;(2)证明见解析;(3).【分析】(1)解方程得到OA=1,由t=2,于是得到结论;
(2)根据AP=PQ=t,得到OQ=1-2t,根据正方形的性质得到PQ=QM=MN=PN=t,求得M(1-2t,t),N(1-t,t),C(1-t,t),求得CM=(1-t)-(1-2t)=t,CN=(1-t)-(1-t)=t,于是得到结论;
(3)作矩形NEFK,则EN=FK,推出当O,F,K三点共线时,OF+EN=OF+FK的值最小,如图,作OH⊥QN于H,解直角三角形即可得到结论.【详解】(1)在yx+4中,令y=0,得x=1,∴OA=1.∵t=2,∴AP=PQ=2,∴OQ=1﹣2﹣2=2.故答案为:2;(2)∵AP=PQ=t,∴OQ=1﹣2t.∵四边形PQMN是正方形,∴PQ=QM=MN=PN=t,∴M(1﹣2t,t),N(1﹣t,t),C(1t,t),∴CM=(1t)﹣(1﹣2t)t,CN=(1﹣t)﹣(1t)t,∴CM=CN;(3)作矩形NEFK,则EN=FK.∵OF+EN=OF+FK,∴当O,F,K三点共线时,OF+EN=OF+FK的值最小,如图,作OH⊥QN于H,在等腰直角三角形PQN中,∵PQ=t,∴QNt,∴HN=QN﹣QHt﹣(t﹣3)=3,∴OF+EN的最小值为:HE+EN=HN=3.【点睛】本题考查了一次函数的综合题,正方形的性质,矩形的性质,最短路线问题,正确的作出图形是解题的关键.20、(1)BD=CE,BD⊥CE;(2)BD=CE,BD⊥CE;证明见解析;(3)y=40-x.【分析】(1)根据等腰直角三角形的性质解答;(2)延长BD,分别交AC、CE于F、G,证明△ABD≌△ACE,根据全等三角形的性质、垂直的定义解答;(3)先证明∠BAD=∠CAE,再证明△ABD≌△ACE,可得∠BHC=90°,最后利用勾股定理计算即可.【详解】(1)∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∴BD=CE,BD⊥CE;(2)BD=CE,BD⊥CE,理由如下:延长BD,分别交AC、CE于F、G,∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∵∠BAD=∠BAC-∠DAC,∠CAE=∠DAE-∠DAC∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠AFB=∠GFC,∴∠CGF=∠BAF=90°,即BD⊥CE;(3)∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∵∠BAD=∠BAC+∠DAC,∠CAE=∠DAE+∠DAC,∴∠BAD=∠CAE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠AOB=∠HOC,∴∠BHC=∠BAC=90°,∴CD2+EB2=CH2+HB2+EH2+HD2=BC2+DE2∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE∵,∴BC2=32,DE2=8∵,∴x+y=32+8∴y=40-x.【点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质以及函数解析式的确定,掌握相关的判定定理和性质定理是解题的关键.21、(1);(2)甲仓库运往A地70吨,甲仓库运往B地30吨,乙仓库运往A地0吨,乙仓库运往B地80吨时,运费最低,最低总运费是37100元.【解析】试题分析:(1)由甲库运往A地水泥x吨,根据题意首先求得甲库运往B地水泥(100-x)吨,乙库运往A地水泥(70-x)吨,乙库运往B地水泥(10+x)吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式;(2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最省的总运费.试题解析:(1)设甲库运往A地水泥x吨,则甲库运往B地水泥(100−x)吨,乙库运往A地水泥(70−x)吨,乙库运往B地水泥[80−(70−x)]=(10+x)吨,根据题意得:y=12×20x+10×25(100−x)+12×15×(70−x)+8×20(10+x)=−30x+39200(0⩽x⩽70),∴总运费y(元)关于x(吨)的函数关系式为:y=−30x+39200;(2)∵一次函数y=−30x+39200中,k=−30<0,∴y的值随x的增大而减小,∴当x=70时,总运费y最省,最省的总运费为37100元.点睛:此题考查了一次函数的实际应用问题.此题难度较大,解题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数性质求解.22、(1)证明见解析;(1)①110°;②证明见解析;(3)可以是等腰三角形,此时的度数为或.【分析】(1)先证明△ACD与△BFD全等,即可得出结论;(1)①先根据等边对等角及三角形的内角和求出∠B的度数,再由平行线的性质可得出∠ADE的度数,最后根据平角的定义可求出∠CDB的度数;②根据等腰三角形的性质以及平行线的性质可得出∠A=∠EDA,从而可得出结论;(3)先假设△ECD可以是等腰三角形,再分以下三种情况:I.当时,;II.当时,;III.当时,,然后再根据等腰三角形的性质、三角形的内角和以及三角形外角的性质求解即可.【详解】(1)证明:,是的中线,.,.,,;(1)①解:∵AC=BC,∠ACB=110°,∴∠A=∠B=(180°-110°)÷1=30°,又DE∥BC,∴∠ADE=∠B=30°,∴∠CDB=180°-∠ADE-∠EDC=110°,故答案为:;②证明:,.,.,为等腰三角形.(3)解:可以是等腰三角形,理由如下:I.当时,,如图3,.,.II.当时,,如图4,,..III.当时,.∴,,此时,点与点重合,不合题意.综上所述,可以是等腰三角形,此时的度数为或.【点睛】本题主要考查三角形的性质与判定,三角形全等的判定与性质,平行线的性质,三角形的内角和定理以及三角形外角的性质,掌握基本性质与判定定理是解题的关键.23、(1)y=﹣2x﹣3;(2)S△ABC.【分析】(1)根据y轴上点的坐标特征可求A点坐标,再根据AO=2BO,可求B点坐标,根据待定系数法可求直线l2的解析式;
(2)利用三角形面积公式即可求得.【详解】解:(1)∵直线l1:y=x+6与y轴交于点A,∴当x=0时,y=0+6=6,∴A(0,6).∵AO=2BO,∴B(0,﹣3).∵C(﹣3,3),代入直线l2:y=kx+b中得,解得.故直线l2的解析式为y=﹣2x﹣3;(2)S△ABCAB•|xC|(6+3)×3.【点睛】此题主要考查了两条直线相交或平行问题,待定系数法,三角形的面积,关键是求出A点坐标,B点坐标.24、(1)真;(2);(3)①证明见解析;②或.【分析】(1)设等边三角形的边长为a,则a2+a2=2a2,即可得出结论;
(2)由勾股定理得出a2+b2=c2①,由Rt△ABC是奇异三角形,且b>a,得出a2+c2=2b2②,由①②得出b=a,c=a,即可得出结论;
(3)①由勾股定理得出AC2+BC2=AB2,AD2+BD2=AB2,由已知得出2AD2=AB2,AC2+CE2=2AE2,即可得出△ACE是奇异三角形;
②由△ACE是奇异三角形,得出AC2+CE2=2AE2,分两种情况,由直角三角形和奇异三角形的性质即可得出答案.【详解】(1)解:“等边三角形是奇异三角形”这个命题是真命题,理由如下:设等边三角形的一边为,则,∴符合奇异三角形”的定义.(2)解:∵,则①,∵是奇异三角形,且,∴②,由①②得:,,∴.(3)①证明:∵,∴,,∵,∴,∵,,∴,∴是奇异三角形.②由①可得是奇异三角形,∴,当是直角三角形时,由(2)得:或,当时,,即,∵,∴,∵,,∴,∴.当时,,即,∵,∴°,∵,,∴,∴,∴或.【点睛】本题是四边形综合题目,考查奇异三角形的判定与性质、等边三角形的性质、直角三角形的性质、勾股定理等知识;熟练掌握奇异三角形的定义、等边三角形的性质和勾股定理是解题的关键.25、(1)200,144;(2)答案见解析;(3)600【分析】(1)根据喜爱鸡腿的人数是50人,所占的百分比是25%即可求得调查的总人数;(2)利用调查的总人数减去其它组的人数即可求得喜爱烤肠的人数;(3)利用总人数3000乘以对应的比例即可求解.【详解】解:(1)参加调查的人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 低音喇叭产品入市调查研究报告
- 气体液化设备市场需求与消费特点分析
- 维生素补充液市场发展现状调查及供需格局分析预测报告
- 美容用蓖麻油市场发展预测和趋势分析
- 曲面视频显示屏产品入市调查研究报告
- 电子显微镜产业深度调研及未来发展现状趋势
- 电子芯片市场发展现状调查及供需格局分析预测报告
- 《成本归集与分配简》课件
- 工业用电磁炉市场发展现状调查及供需格局分析预测报告
- 立式木制标志牌产业规划专项研究报告
- 《认知觉醒》- 周岭 - 读书笔记
- 《内蒙古自治区国土空间规划(2021-2035年)》
- JGJ48-2014 商店建筑设计规范
- 酒店开业庆典活动合同
- 2024新外研版初一上英语单词默写表
- 病人发生心脏骤停应急预案演练脚本
- 高考化学一轮总复习:环境保护与绿色化学
- 山东省各地2023-2024学年高一数学第二学期期末统考试题含解析
- 2024届高考英语作文复习专项读后续写:拯救小猫任务单素材
- 某电机修造厂35kv终端变电所设计
- 2.1《迎接蚕宝宝的到来》教学设计(新课标)
评论
0/150
提交评论