版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
28.1锐角三角函数达标训练一、基础·巩固达标1.在Rt△ABC中,如果各边长度都扩大2倍,则锐角A的正弦值和余弦值()A.都没有变化B.都扩大2倍C.都缩小2倍D.不能确定2.已知α是锐角,且cosα=,则sinα=()A.B.C.D.3.Rt△ABC中,∠C=90°,AC∶BC=1∶,则cosA=_______,tanA=_________.4.设α、β为锐角,若sinα=,则α=________;若tanβ=,则β=_________.5.用计算器计算:sin51°30′+cos49°50′-tan46°10′的值是_________.6.△ABC中,∠BAC=90°,AD是高,BD=9,tanB=,求AD、AC、BC.二、综合•应用达标7.已知α是锐角,且sinα=,则cos(90°-α)=()A.B.C.D.8.若α为锐角,tana=3,求的值.9.已知方程x2-5x·sinα+1=0的一个根为,且α为锐角,求tanα.10.同学们对公园的滑梯很熟悉吧!如图28.1-13是某公园(六·一)前新增设的一台滑梯,该滑梯高度AC=2m,滑梯着地点B与梯架之间的距离BC=4m.(1)求滑梯AB的长(精确到0.1m);(2)若规定滑梯的倾斜角(∠ABC)不超过45°属于安全范围,请通过计算说明这架滑梯的倾斜角是否要求?图28.1-1311.四边形是不稳定的.如图28.1-14,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出∠α的值吗?图28.1-14三、回顾•展望达标12.三角形在正方形网格纸中的位置如图28.3-15所示,则sinα的值是()A.B.C.D.图28.1-15图28.1-17图28.1-1613.如图28.1-17,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径,AC=2,则cosB的值是()A.B.C.D.14.在△ABC中,∠C=90°,AB=15,sinA=,则BC=()A.45B.5C.15.如图28.3-16,CD是Rt△ABC斜边上的高,AC=4,BC=3,则cos∠BCD=()A.B.C.D.16.课本中,是这样引入“锐角三角函数”的:如图28.1-18,在锐角α的终边OB上,任意取两点P和P1,分别过点P和P1做始边OA的垂线PM和P1M1,M和M1为垂足.我们规定,比值________叫做角α的正弦,比值________叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:________,________.说明这些比值都是由________唯一确定的,而与P点在角的终边上的位置无关,所以,这些比值都是自变量α的函数图28.1-18图28.1-1917.计算:2-1-tan60°+(-1)0+;18.已知:如图28.1-19,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.参考答案一、基础·巩固达标1.在Rt△ABC中,如果各边长度都扩大2倍,则锐角A的正弦值和余弦值()A.都没有变化B.都扩大2倍C.都缩小2倍D.不能确定思路解析:当Rt△ABC的各边长度都扩大二倍,所得新三角形与原三角形相似,故锐角A大小不变.答案:A2.已知α是锐角,且cosα=,则sinα=()A.B.C.D.思路解析:由cosα=,可以设α的邻边为4k,斜边为5k,根据勾股定理,α的对边为3k,则sinα=.答案:C3.Rt△ABC中,∠C=90°,AC∶BC=1∶,则cosA=_______,tanA=_________.思路解析:画出图形,设AC=x,则BC=,由勾股定理求出AB=2x,再根据三角函数的定义计算.答案:,4.设α、β为锐角,若sinα=,则α=________;若tanβ=,则β=_________.思路解析:要熟记特殊角的三角函数值.答案:60°,30°5.用计算器计算:sin51°30′+cos49°50′-tan46°10′的值是_________.思路解析:用计算器算三角函数的方法和操作步骤.答案:0.38606.△ABC中,∠BAC=90°,AD是高,BD=9,tanB=,求AD、AC、BC.思路解析:由条件可知△ABC、△ABD、△ADC是相似的直角三角形,∠B=∠CAD,于是有tan∠CAD=tanB=,所以可以在△ABD、△ADC中反复地运用三角函数的定义和勾股定理来求解.解:根据题意,设AD=4k,BD=3k,则AB=5k.在Rt△ABC中,∵tanB=,∴AC=AB=k.∵BD=9,∴k=3.所以AD=4×3=12,AC=×3=20.根据勾股定理.二、综合•应用达标7.已知α是锐角,且sinα=,则cos(90°-α)=()A.B.C.D.思路解析:方法1.运用三角函数的定义,把α作为直角三角形的一个锐角看待,从而对边、邻边、斜边之比为4∶3∶5,(90°-α)是三角形中的另一个锐角,邻边与斜边之比为4∶5,cos(90°-α)=.方法2.利用三角函数中互余角关系“sinα=cos(90°-α)”.答案:A8.若α为锐角,tana=3,求的值.思路解析:方法1.运用正切函数的定义,把α作为直角三角形的一个锐角看待,从而直角三角形三边之比为3∶1∶,sinα=,cosα=,分别代入所求式子中.方法2.利用tanα=计算,因为cosα≠0,分子、分母同除以cosα,化简计算.答案:原式=.9.已知方程x2-5x·sinα+1=0的一个根为,且α为锐角,求tanα.思路解析:由根与系数的关系可先求出方程的另一个根是,进而可求出sinα=,然后利用前面介绍过的方法求tanα.解:设方程的另一个根为x2,则()x2=1∴x2=∴5sinα=()+(),解得sinα=.设锐角α所在的直角三角形的对边为4k,则斜边为5k,邻边为3k,∴tanα=.10.同学们对公园的滑梯很熟悉吧!如图28.1-13是某公园(六·一)前新增设的一台滑梯,该滑梯高度AC=2m,滑梯着地点B与梯架之间的距离BC=4m.图28.1-13(1)求滑梯AB的长(精确到0.1m);(2)若规定滑梯的倾斜角(∠ABC)不超过45°属于安全范围,请通过计算说明这架滑梯的倾斜角是否要求?思路解析:用勾股定理可以计算出AB的长,其倾斜角∠ABC可以用三角函数定义求出,看是否在45°范围内.解:(1)在Rt△ABC中,≈4.5.答:滑梯的长约为4.5m.(2)∵tanB=,∴∠ABC≈27°,∠ABC≈27°<45°.所以这架滑梯的倾斜角符合要求.11.四边形是不稳定的.如图28.1-14,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出∠α的值吗?图28.1-14思路解析:面积的改变实际上是平行四边形的高在改变,结合图形,可以知道h=,再在高所在的直角三角形中由三角函数求出α的度数.解:设原矩形边长分别为a,b,则面积为ab,由题意得,平行四边形的面积S=ab.又因为S=ah=a(bsinα),所以ab=absinα,即sinα=.所以α=30°.三、回顾•展望达标12.三角形在正方形网格纸中的位置如图28.3-15所示,则sinα的值是()图28.1-15A.B.C.D.思路解析:观察格点中的直角三角形,用三角函数的定义.答案:C13.如图28.1-17,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径,AC=2,则cosB的值是()图28.1-17A.B.C.D.思路解析:利用∠BCD=∠A计算.答案:D14.在△ABC中,∠C=90°,AB=15,sinA=,则BC=()A.45B.5C.思路解析:根据定义sinA=,BC=AB·sinA.答案:B15.如图28.3-16,CD是Rt△ABC斜边上的高,AC=4,BC=3,则cos∠BCD=()图28.1-16A.B.C.D.思路解析:直径所对的圆周角是直角,设法把∠B转移到Rt△ADC中,由“同圆或等圆中,同弧或等弧所对的圆周角相等”,得到∠ADC=∠B.答案:B16.课本中,是这样引入“锐角三角函数”的:如图28.1-18,在锐角α的终边OB上,任意取两点P和P1,分别过点P和P1做始边OA的垂线PM和P1M1,M和M1为垂足.我们规定,比值________叫做角α的正弦,比值________叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:________,________.说明这些比值都是由________唯一确定的,而与P点在角的终边上的位置无关,所以,这些比值都是自变量α的函数图28.1-18思路解析:正弦、余弦函数的定义.答案:,锐角α17.计算:2-1-tan60°+(-1)0+;思路解析:特殊角的三角函数,零指数次幂的意义,负指数次幂的意义.解:2-1-tan60°+(-1)0+||=-+1+=.18.已知:如图28.1-19,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.图28.1-19(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.思路解析:圆的切线问题跟过切点的半径有关,连接OA,证∠OAD=90°.由sinB=可以得到∠B=30°,由此得到圆心角∠AOD=60°,从而得到△ACO是等边三角形,由此∠OAD=90°.AD是Rt△OAD的边,有三角函数可以求出其长度.(1)证明:如图,连接OA.∵sinB=,∴∠B=30°.∴∠AOD=60°.∵OA=OC,∴△ACO是等边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省十堰市第二中学高中地理必修一人教版导学案232气旋反气旋
- 工程现场签证管理流程
- 湖北省普通高中高三下学期高考押题预测卷化学试题-1
- 法律案例分析单选题100道及答案解析
- 安徽省县中联盟2023-2024学年高一下学期5月联考(B卷)历史试卷2
- 河北省涞水波峰中学高三下学期语文专练36
- 2《烛之武退秦师》试讲稿2023-2024学年高中语文必修下册
- 理科数学一轮复习高考帮试题第12章第1讲排列与组合(习思用数学理)
- 102分子动理论的初步知识(教师版)八年级物理下册讲义(沪粤版)
- 4S店装修工程管理协议
- 中央企业商业秘密安全保护技术指引2015版
- 熔化焊接与热切割操作规程
- EBO管理体系与案例分享
- 计算机网络自顶向下(第七版)课后答案-英文
- 临时工程经济比选方案
- 污水管道工程监理规划
- GB/T 20934-2016钢拉杆
- 临床常见问题的康复评定与处理
- Unit3 Topic2-SectionA课件- 仁爱版九年级英语上册
- 养老型年金险产品理念课件
- 江苏开放大学行政管理学2020考试复习题答案
评论
0/150
提交评论