版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知直角三角形两边的长分别为6和8,则此三角形的周长为()A.14 B. C.24或 D.14或2.下列分式中,是最简分式的是()A. B. C. D.3.某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成4.下列运算结果正确的是()A. B. C. D.5.如图,正方形ABCD中,AB=1,则AC的长是()A.1 B. C. D.26.下列各式从左到右的变形,一定正确的是()A. B. C. D.7.我国的纸伞工艺十分巧妙,如图,伞圈D能沿着伞柄滑动,伞不论张开还是缩拢,伞柄AP始终平分同一平面内所成的角∠BAC,为了证明这个结论,我们的依据是A.SAS B.SSS C.AAS D.ASA8.下列命题中,属于真命题的是()A.三角形的一个外角大于内角 B.两条直线被第三条直线所截,同位角相等C.无理数与数轴上的点是一一对应的 D.对顶角相等9.若点和点关于轴对称,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.下列各数中,能化为无限不循环小数的是()A. B. C. D.二、填空题(每小题3分,共24分)11.命题“对顶角相等”的条件是_______,结论是__________,它是___命题(填“真”或“假”).12.一圆柱形油罐如图所示,要从点环绕油罐建梯子,正好到点的正上方点,已知油罐底面周长为,高为,问所建的梯子最短需________米.13.实数81的平方根是_____.14.分解因式:4mx2﹣my2=_____.15.是关于的一元二次方程的解,则.__________.16.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是__________17.如图,已知△ABC中,∠BAC=132°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,则∠DAE的度数为____.18.如果多项式可以分解成两个一次因式的积,那么整数的值可取________个.三、解答题(共66分)19.(10分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.20.(6分)某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价/(元/盏)售价/(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?21.(6分)计算:(1)a3•a2•a4+(﹣a)2(2)(x+y)2﹣x(2y﹣x)22.(8分)一般地,若(且),则n叫做以a为底b的对数,记为,即.譬如:,则4叫做以3为底81的对数,记为(即=4).(1)计算以下各对数的值:,,.(2)由(1)中三数4、16、64之间满足的等量关系式,直接写出、、满足的等量关系式;(3)由(2)猜想一般性的结论:.(且),并根据幂的运算法则:以及对数的含义证明你的猜想.23.(8分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.24.(8分)某文化用品商店用2000元购进一批学生书包,这批书包进人市场后发现供不应求,商店又购进第二批同样的书包,且所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?25.(10分)如图,已知AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)问题探究:线段OB,OC有何数量关系,并说明理由;(2)问题拓展:分别连接OA,BC,试判断直线OA,BC的位置关系,并说明理由;(3)问题延伸:将题目条件中的“CD⊥AB于D,BE⊥AC于E”换成“D、E分别为AB,AC边上的中点”,(1)(2)中的结论还成立吗?请直接写出结论,不必说明理由.26.(10分)如图,在平面直角坐标系中,已知点A的坐标为(15,0),点B的坐标为(6,12),点C的坐标为(0,6),直线AB交y轴于点D,动点P从点C出发沿着y轴正方向以每秒2个单位的速度运动,同时,动点Q从点A出发沿着射线AB以每秒a个单位的速度运动设运动时间为t秒,(1)求直线AB的解析式和CD的长.(2)当△PQD与△BDC全等时,求a的值.(3)记点P关于直线BC的对称点为,连结当t=3,时,求点Q的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先设Rt△ABC的第三边长为,由于8是直角边还是斜边不能确定,故应分8是斜边或为斜边两种情况讨论.【详解】解:设的第三边长为,①当8为直角三角形的直角边时,为斜边,由勾股定理得,,此时这个三角形的周长;②当8为直角三角形的斜边时,为直角边,由勾股定理得,,此时这个三角形的周长,故选:C.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2、D【分析】根据最简分式的定义:一个分式的分子与分母没有公因式时叫最简分式,逐一判断即可.【详解】A.,不是最简分式,故本选项不符合题意;B.,不是最简分式,故本选项不符合题意;C.,不是最简分式,故本选项不符合题意;D.是最简分式,故本选项符合题意.故选D.【点睛】此题考查的是最简分式的判断,掌握最简分式的定义和公因式的定义是解决此题的关键.3、B【解析】试题解析:实际每天生产零件x个,那么表示原计划每天生产的零件个数,实际上每天比原计划多生产5个,表示原计划用的时间-实际用的时间=10天,说明实际上每天比原计划多生产5个,提前10天完成任务.故选B.4、C【分析】根据二次根式的性质及除法法则逐一判断即可得答案.【详解】A.,故该选项计算错误,不符合题意,B.,故该选项计算错误,不符合题意,C.,故该选项计算正确,符合题意,D.,故该选项计算错误,不符合题意,故选:C.【点睛】本题考查二次根式的性质及运算,理解二次根式的性质并熟练掌握二次根式除法法则是解题关键.5、B【分析】在直角三角形ABC中,利用勾股定理可直接求出AC的长;【详解】解:在Rt△ABC中,AB=BC=1,∴AC.故选:B.【点睛】本题考查了正方形的性质和勾股定理,属于基础题.正确的理解勾股定理是解决问题的关键.6、C【分析】根据分式的基本性质逐项分析可得出正确选项.【详解】解:A.,故错误;B.,故错误;C.,故正确;D.当时,无意义,故错误;故选:C【点睛】本题主要考查分式的基本性质,解题的关键是掌握分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.分子、分母、分式本身同时改变两处的符号,分式的值不变.7、B【分析】根据确定三角形全等的条件进行判定即可得解.【详解】解:根据伞的结构,AE=AF,伞骨DE=DF,AD是公共边,
∵在△ADE和△ADF中,∴△ADE≌△ADF(SSS),
∴∠DAE=∠DAF,
即AP平分∠BAC.
故选B.【点睛】本题考查了全等三角形的应用,理解题意确定出全等的三角形以及全等的条件是解题的关键.8、D【分析】根据三角形外角性质、平行线的性质、无理数和对顶角进行判断即可.【详解】解:A、三角形的一个外角大于与它不相邻的内角,原命题是假命题,不符合题意;
B、两条平行线被第三条直线所截,同位角相等,原命题是假命题,不符合题意;
C、实数与数轴上的点是一一对应的,原命题是假命题,不符合题意;
D、对顶角相等,是真命题,符合题意;
故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9、D【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点A(a−2,1)和点B(−1,b+5)关于x轴对称,得a−2=-1,b+5=-1.解得a=1,b=−2.则点C(a,b)在第四象限,故选:D.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a−2=-1,b+5=-1是解题关键.10、D【解析】根据无理数的概念进行选择判断.【详解】解:A.属于无限循环小数;B.属于有限小数;C.属于无限循环小数;D.属于无限不循环小数.故选D.【点睛】本题考查无理数的概念,比较简单.二、填空题(每小题3分,共24分)11、两个角是对顶角这两个角相等真【分析】根据命题由条件和结论组成,得到此命题的条件是“两个角是对顶角”,结论是“这两个角相等”,然后根据对顶角的性质判断命题的真假性.【详解】解:命题“对顶角相等”的条件:两个角是对顶角;结论:这两个角相等;由对顶角的性质可知:这个命题是真命题.故答案为:两个角是对顶角,这两个角相等,真.【点睛】本题考查了命题的结构与分类,掌握命题的结构、分类并能运用所学知识时行准确判断是解题的关键.12、1【分析】把圆柱沿AB侧面展开,连接AB,再根据勾股定理即可得出结论.【详解】如图所示:
∵AC=12m,BC=5m,
∴AB=m,
∴梯子最短需要1m.
故答案为:1.【点睛】本题考查的是平面展开-最短路径问题,根据题意画出图形,利用勾股定理求解是解答此题的关键.13、±1【分析】根据平方根的定义即可得出结论.【详解】解:实数81的平方根是:±=±1.故答案为:±1【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.14、m(2x+y)(2x﹣y)【分析】先提取公因式,然后利用平方差公式进行因式分解.【详解】解:原式=m(4x2﹣y2)=m(2x+y)(2x﹣y),故答案为:m(2x+y)(2x﹣y).【点睛】掌握因式分解的几种方法为本题的关键.15、-2【分析】先把x=1代入方程得a+2b=-1,然后利用整体代入的方法计算的值.【详解】解:把代入方程得:,所以,所以故答案为【点睛】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.16、1.【分析】要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B,
根据两点之间线段最短,
(1)如图,BD=10+5=15,AD=20,
由勾股定理得:AB====1.(2)如图,BC=5,AC=20+10=30,
由勾股定理得,AB====5.
(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:
∵长方体的宽为10,高为20,点B离点C的距离是5,
∴BD=CD+BC=20+5=1,AD=10,
在直角三角形ABD中,根据勾股定理得:
∴AB===5;
由于1<5<5,故答案为1.【点睛】本题考查两点之间线段最短,关键是将长方体展开,根据两点之间线段最短,运用勾股定理解答.17、84°【分析】利用三角形的内角和定理可得∠B+∠C=48°,然后根据折叠的性质可得∠B=∠DAB,∠C=∠EAC,从而求出∠DAB+∠EAC=48°,即可求出∠DAE.【详解】解:∵∠BAC=132°,∴∠B+∠C=180°-∠BAC=48°由折叠的性质可得:∠B=∠DAB,∠C=∠EAC∴∠DAB+∠EAC=48°∴∠DAE=∠BAC-(∠DAB+∠EAC)=84°故答案为:84°.【点睛】此题考查的是三角形的内角和定理和折叠的性质,掌握三角形的内角和定理和折叠的性质是解决此题的关键.18、1【分析】根据题意先把1分成2个整数的积的形式,共有1种情况,m值等于这两个整式的和.【详解】解:把1分成2个整数的积的形式有11,(-1)(-1),22,(-2)(-2)所以m有1+1=5,(-1)+(-1)=-5,2+2=1,(-2)+(-2)=-1,共1个值.故答案为:1.【点睛】本题主要考查分解因式的定义,要熟知二次三项式的一般形式与分解因式之间的关系:x2+(m+n)x+mn=(x+m)(x+n),即常数项与一次项系数之间的等量关系.三、解答题(共66分)19、(1)25;(2)这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.1;(3)初赛成绩为1.65m的运动员能进入复赛.【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;(2)、观察条形统计图得:=1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.1,则这组数据的中位数是1.1.(3)、能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.1m,∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数20、(1)75盏;25盏(2)购进A型台灯20盏,B型台灯80盏;1元【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100﹣x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设购进A型台灯x盏,则购进B型台灯(100﹣x)盏,由题意可得:30x+50(100﹣x)=3500∴x=75∴100﹣x=25答:购进A型台灯75盏,购进B型台灯25盏;(2)设商场销售完这批台灯可获利y元,y=15x+20(100﹣x)=﹣5x+2000又∵100﹣x≤4x,∴x≥20∵k=﹣5<0,∴y随x的增大而减小∴当x=20时,y取得最大值,最大值是1.答:购进A型台灯20盏,购进B型台灯80盏时获利最多,此时利润为1元.【点睛】本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.21、(1)a9+a1;(1)1x1+y1.【分析】(1)先计算同底数幂的乘法,积的乘方,再合并同类项即可,(2)先按完全平方公式与单项式乘以多项式进行乘法运算,再合并同类项即可.【详解】(1)原式=a9+a1(1)原式==x1+1xy+y1﹣1xy+x1=1x1+y1【点睛】本题考查的是幂的运算,同底数幂的乘法,积的乘方运算,整式的乘法运算,掌握利用完全平方公式进行简便运算是解题的关键.22、(1)2,4,6;(2)+=;(3)猜想:,证明见解析.【分析】(1)根据材料中给出的运算,数值就是乘方运算的指数;(2)由(1)可以得出;(3)根据(2)可以写出,根据材料中的定义证明即可.【详解】(1),(2)(3)猜想:证明:设,,则,,故可得,,即.【点睛】本题考查对阅读材料的理解,类似于定义新运算,需要根据已知的材料寻找规律.23、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【分析】(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC≌△DAE,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE即可得∠FAE的度数;(3)延长BF到G,使得FG=FB,易证△AFB≌△AFG,根据全等三角形的性质可得AB=AG,∠ABF=∠G,再由△BAC≌△DAE,可得AB=AD,∠CBA=∠EDA,CB=ED,所以AG=AD,∠ABF=∠CDA,即可得∠G=∠CDA,利用AAS证得△CGA≌△CDA,由全等三角形的性质可得CG=CD,所以CG=CB+BF+FG=CB+2BF=DE+2BF.【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,在△CGA和△CDA中,,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.24、1700【分析】根据题意,由“数量是第一批购进数量的1倍”得等量关系为:6100元购买的数量=2000元购买的数量×1.然后,由“盈利=总售价总进价”进行解答.【详解】解:设第一批购进书包x个,则第二批购进书包1x个,解得:x=25,经检验:x=25是原分式方程的解;∴第一批购进25个,第二批购进75个,120×(25+75)-2000-6100=1700(元);答:商店共盈利1700元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.25、(1)OB=OC,理由见解析;(2)AO⊥BC,理由见解析;(3)(1)(2)中的结论还成立,理由见解析.【分析】(1)根据垂直定义求出∠ADC=∠AEB=90°,根据AAS推出△ADC≌△AEB,根据全等得出AD=AE,∠B=∠C,得出BD=CE,根据AAS推出△BDO≌△CEO即可得出结论;(2)延长AO交BC于M,根据SAS推出△OBA≌△OCA,根据全等得出∠BAO=∠CAO,根据等腰三角形的性质推出即可;(3)求出AD=AE,BD=CE,根据SAS推出△ADC≌△AEB,根据全等三角形的性质得出∠DBO=∠ECO,根据AAS推出△BDO≌△CEO,根据全等三角形的性质得出OB=OC,根据SAS推出△OBA≌△OCA,推出∠BAO=∠CAO,根据等腰三角形的性质得出即可.【详解】(1)∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,在△ADC和△AEB中,∵,∴△ADC≌△AEB(AAS),∴AD=AE,∠B=∠C.∵AB=AC,∴BD=CE,在△BDO和△CEO中,∵,∴△BDO≌△CEO(AAS),∴OB=OC;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年沪教版选修4历史下册阶段测试试卷含答案
- 2025年人教B版高三历史下册月考试卷含答案
- 2025年中图版选修4地理上册阶段测试试卷含答案
- 2025年中图版九年级地理上册阶段测试试卷
- 2025年华东师大版七年级生物下册月考试卷
- 2025年粤人版选择性必修二历史上册阶段测试试卷
- 山东省济南天桥区2023-2024学年八年级下学期期中考试物理试题【含答案、解析】
- 2025年山西工程职业学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025年安徽工业职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年大连汽车职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2023年四川省绵阳市中考初中学业水平考试语文试题【含答案】
- 正大天虹方矩管镀锌方矩管材质书
- 2024年山东鲁商集团有限公司招聘笔试参考题库含答案解析
- 山东省泰安市2022年初中学业水平考试生物试题
- 受贿案例心得体会
- 人教A版高中数学选择性必修第一册第二章直线和圆的方程-经典例题及配套练习题含答案解析
- 图书馆学基础简明教程
- 毕业设计(论文)-液体药品灌装机的设计与制造
- 二年级下册数学教案 -《数一数(二)》 北师大版
- 银行内部举报管理规定
- 平面几何强化训练题集:初中分册数学练习题
评论
0/150
提交评论