版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在中,,为的中点,,,垂足分别为点,,且,则线段的长为()A. B.2 C.3 D.2.分式的值为,则的值为()A. B. C. D.无法确定3.已知,现把小棒依次摆放在两射线之间,并使小棒在两射线上,从开始,用等长的小棒依次向右摆放,其中为第1根小棒,且,若只能摆放9根小棒,则的度数可以是()A.6° B.7° C.8° D.9°4.下列各命题是真命题的是()A.如果,那么B.0.3,0.4,0.5是一组勾股数C.两条直线被第三条直线所截,同位角相等D.三角形的任意两边之和大于第三边5.如图是我市某景点6月份内日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温出现的频率是()A.3 B.0.5 C.0.4 D.0.36.如图,在△ABC中,AC=DC=DB,∠ACB=105°,则∠B的大小为()A.15° B.20° C.25° D.40°7.等腰三角形的一个角是80°,则它的顶角的度数是()A.80° B.80°或20° C.80°或50° D.20°8.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容:如图,已知,求的度数.解:在和中,,∴,∴(全等三角形的相等)∵,∴,∴则回答正确的是()A.代表对应边 B.*代表110° C.代表 D.代表9.下列各式不是最简分式的是()A. B. C. D.10.三角形的三边长可以是()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13二、填空题(每小题3分,共24分)11.如图,AB=AC=6,,BD⊥AC交CA的延长线于点D,则BD=___________.12.如图,在平面直角坐标系中,为坐标原点,点和点是坐标轴上两点,点为坐标轴上一点,若三角形的面积为,则点坐标为__________.13.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是_____cm1.14.一个容器由上下竖直放置的两个圆柱体A,B连接而成,向该容器内匀速注水,容器内水面的高度h(厘米)与注水时间t(分钟)的函数关系如图所示,若上面A圆柱体的底面积是10厘米2,下面B圆柱体的底面积是50厘米2,则每分钟向容器内注水________厘米1.15.如图,若和的面积分别为、,则_____(用“>”、“=”或“<”来连接).16.若式子的值为零,则x的值为______.17.若a-b=3,ab=1,则a2+b2=______.18.如图,在平面直角坐标系中,、、、…、均为等腰直角三角形,且,点、、、……、和点、、、……、分别在正比例函数和的图象上,且点、、、……、的横坐标分别为1,2,3…,线段、、、…、均与轴平行.按照图中所反映的规律,则的顶点的坐标是_____.(其中为正整数)三、解答题(共66分)19.(10分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2,C2的坐标.20.(6分)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.21.(6分)鼎丰超市以固定进价一次性购进保温杯若干个,11月份按一定售价销售,销售额为1800元,为扩大销量,减少库存,12月份在11月份售价基础上打9折销售,结果销售量增加50个,销售额增加630元.(1)求鼎丰超市11月份这种保温杯的售价是多少元?(2)如果鼎丰超市11月份销售这种保温杯的利润为600元,那么该鼎丰超市12月份销售这种保温杯的利润是多少元?22.(8分)如图,在中,,且,点是线段上一点,且,连接BE.(1)求证:(2)若,求的度数.23.(8分)已知:直线,点,分别是直线,上任意两点,在直线上取一点,使,连接,在直线上任取一点,作,交直线于点.(1)如图1,若点是线段上任意一点,交于,求证:;(2)如图2,点在线段的延长线上时,与互为补角,若,请判断线段与的数量关系,并说明理由.24.(8分)一次函数的图象经过点和两点.求出该一次函数的表达式;画出该一次函数的图象(不写做法);判断点是否在这个函数的图象上;求出该函数图象与坐标轴围成的三角形面积.25.(10分)已知一次函数与的图象如图所示,且方程组的解为,点的坐标为,试确定两个一次函数的表达式.26.(10分)在平面直角坐标系中,B(2,2),以OB为一边作等边△OAB(点A在x轴正半轴上).(1)若点C是y轴上任意一点,连接AC,在直线AC上方以AC为一边作等边△ACD.①如图1,当点D落在第二象限时,连接BD,求证:AB⊥BD;②若△ABD是等腰三角形,求点C的坐标;(2)如图2,若FB是OA边上的中线,点M是FB一动点,点N是OB一动点,且OM+NM的值最小,请在图2中画出点M、N的位置,并求出OM+NM的最小值.
参考答案一、选择题(每小题3分,共30分)1、C【分析】连接BD,根据题意得到BD平分∠CBA,得到∠DBE=30°,再根据三角函数即可求解.【详解】连接BD,∵,,∴BD平分∠CBA∴∠DBE=30°,∴BE=DE÷tan30°==3,故选C.【点睛】此题主要考查解直角三角形,解题的关键是熟知角平分线的判定及性质、三角函数的应用.2、B【解析】根据分式的值等于1时,分子等于1且分母不为1,即可解出的值.【详解】解:分式的值为1,且.故选:B.【点睛】本题是已知分式的值求未知数的值,这里注意到分式有意义,分母不为1.3、D【分析】根据等腰三角形的性质和三角形的外角性质可得∠A2A1A3=2θ,∠A3A2A4=3θ,……,以此类推,可得摆放第9根小棒后,∠A9A8A10=9θ,,由于只能放9根,则且,求得的取值范围即可得出答案.【详解】∵,∴∠AA2A1=∠BAC=θ,∴∠A2A1A3=2θ,同理可得∠A3A2A4=3θ,……以此类推,摆放第9根小棒后,∠A9A8A10=9θ,,∵只能放9根,∴即,解得,故选:D.【点睛】本题考查了等腰三角形的性质与三角形的外角性质,熟练掌握等边对等角,以及三角形的外角等于不相邻的两个内角之和,是解题的关键.4、D【分析】逐一判定各项,正确则为真命题,错误则为假命题.【详解】A选项,如果,那么不一定等于,假命题;B选项,,不是勾股数,假命题;C选项,两条平行的直线被第三条直线所截,同位角相等,假命题;D选项,三角形的任意两边之和大于第三边,真命题;故选:D.【点睛】此题主要考查真命题的判断,熟练掌握,即可解题.5、D【分析】通过折线统计图和频率的知识求解.【详解】解:由图知10天的气温按从小到大排列为:22.3,24,24,26,26,26,26.5,28,30,30,26有3个,因而26出现的频率是:=0.3.故选D.【点睛】本题考查了频率的计算公式,理解公式是关键.6、C【分析】根据边相等的角相等,用∠B表示出∠CDA,然后就可以表示出∠ACB,求解方程即可.【详解】解:设∠B=x
∵AC=DC=DB
∴∠CAD=∠CDA=2x
∴∠ACB=180°-2x-x=105°
解得x=25°.
故选:C.【点睛】本题主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.7、B【解析】试题分析:分80°角是顶角与底角两种情况讨论求解.①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.考点:等腰三角形的性质.8、B【分析】根据全等三角形的判定及性质逐一判断即可.【详解】解:A、代表对应角,故A错误,B、,*代表110°,故B正确,C、代表,故C错误,D、代表,故D错误,故答案为:B.【点睛】本题考查了全等三角形的判定及性质,解题的关键是熟练运用全等三角形的判定及性质.9、B【分析】根据最简分式的概念逐项判断即得答案.【详解】解:A、是最简分式,本选项不符合题意;B、,所以不是最简分式,本选项符合题意;C、是最简分式,本选项不符合题意;D、是最简分式,本选项不符合题意.故选:B.【点睛】本题考查的是最简分式的概念,属于基础概念题型,熟知定义是关键.10、D【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得出答案.在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A.2,11,13中,2+11=13,不合题意;B.5,12,7中,5+7=12,不合题意;C.5,5,11中,5+5<11,不合题意;D.5,12,13中,5+12>13,能组成三角形;故选D.【点睛】此题考查了三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.二、填空题(每小题3分,共24分)11、3【分析】由等腰三角形的性质得:利用含的直角三角形的性质可得答案.【详解】解:AB=AC=6,,BD⊥AC,故答案为:【点睛】本题考查的是等腰三角形与含的直角三角形的性质,三角形的外角的性质,掌握这三个性质是解题的关键.12、或【分析】根据点C(m,n)(m≠n)为坐标轴上一点,得到点C的横纵坐标有一个为0,根据三角形的面积公式列方程即可得到结论.【详解】解:∵A点的坐标为
,B点的坐标为∴OA=3,OB=2
,
设C点在x轴上的坐标为BC=∴S△ABC=×3×=3=2=4,=0∵(0,0)点是坐标原点,∴C点在x轴上的坐标为;设C点在y轴上的坐标为S△ABC=××2=3=3解得:=6,=0,∵(0,0)点是坐标原点,∴C点在y轴上的坐标为
∴C点坐标为(4,0)或(0,6).
故答案为(0,6)或(4,0).【点睛】本题考查坐标与图形性质,正确的理解题意分情况表示出三角形的面积是解题的关键.13、1【分析】根据30°的直角三角形,30°所对的边是斜边的一半,可得AC=1cm,进而求出阴影三角形的面积.【详解】解:∵∠B=30°,∠ACB=90°,AB=4cm,∴AC=1cm,∵∠AED=∠ACB=90°,∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=1cm.故S△ACF=×1×1=1(cm1).故答案为1.【点睛】本题考查了30°的直角三角形的性质,熟练掌握相关性质定理是解题关键.14、2【分析】设每分钟向容器内注水a厘米1,圆柱体A的高度为h,根据10分钟注满圆柱体A;再用9分钟容器全部注满,容器的高度为10,即可求解.【详解】解:设每分钟向容器内注水a厘米1,圆柱体A的高度为h,由题意得由题意得:,解得:a=2,h=4,故答案为:2.【点睛】主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.15、=【分析】过A点作,过F点作,可证,得到,再根据面积公式计算即可得到答案.【详解】解:过A点作,过F点作..在与中....,..故答案:=【点睛】本题主要考查了三角形的全等判定和性质,以及三角形的面积公式,灵活运用全等三角形的判定和性质是解题的关键.16、﹣1【分析】直接利用分式的值为零则分子为零分母不等于零,进而得出答案.【详解】∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为﹣1.【点睛】此题主要考查了分式的值为零的条件,正确把握相关性质是解题关键.17、1.【解析】根据题意,把a-b=3两边同时平方可得,a2-2ab+b2=9,结合题意,将a2+b2看成整体,求解即可.【详解】∵a-b=3,ab=1,∴(a-b)2=a2-2ab+b2=9,∴a2+b2=9+2ab=9+2=1.故答案为1.【点睛】本题考查对完全平方公式的变形应用能力.18、【分析】当x=1代入和中,求出A1,B1的坐标,再由△A1B1C1为等腰直角三角形,求出C1的坐标,同理求出C2,C3,C4的坐标,找到规律,即可求出的顶点的坐标.【详解】当x=1代入和中,得:,,∴,,∴,∵△A1B1C1为等腰直角三角形,∴C1的横坐标为,C1的纵坐标为,∴C1的坐标为;当x=2代入和中,得:,,∴,,∴,∵△A2B2C2为等腰直角三角形,∴C2的横坐标为,C2的纵坐标为,∴C2的坐标为;同理,可得C3的坐标为;C4的坐标为;∴的顶点的坐标是,故答案为:.【点睛】本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,正确求出C1、C2、C3、C4的坐标找到规律是解题的关键.三、解答题(共66分)19、(1)答案见解析;(2)答案见解析;(3)点B2(4,-2),C2(1,-3).【解析】试题分析:(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.试题解析:解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).20、(1)∠ECD=36°;(2)BC长是1.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A;(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,由外角和定理求出∠BEC=∠A+∠ECD=72°,继而得∠BEC=∠B,推出BC=CE即可.【详解】解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=1.【点睛】本题考查了线段垂直平分线定理,等腰三角形的性质,三角形的内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.21、(1)18;(2)630【分析】(1)由题意设11月份这种保温杯的售价是x元,依题意列出方程并解出方程即可;(2)根据题意设这种保温杯的售价为y元,并列方程求解进而求出鼎丰超市12月份销售这种保温杯的利润.【详解】解:(1)设11月份这种保温杯的售价是x元,依题意可列方程解得:x=18经检验,x=18是原方程的解,且符合题意答:一鼎丰超市11月份这种保温杯的售价是18元.(2)设这种保温杯的售价为y元,依题意可列方程解得:y=12(18×0.9﹣12)×(100+50)=630(元)答:12月份销售这种保温杯的利润是630元.【点睛】本题考查分式方程的应用以及一元一次方程的应用,解题的关键是找准等量关系,正确列出分式方程和正确列出一元一次方程求解.22、(1)见详解;(2)33°【分析】(1)根据题意可得≌(HL);(2)根据中得到为等腰直角三角形,得到,根据≌得到,即可求出答案.【详解】(1)∵∴=90°∵在和中∴≌(HL)(2)∵中∴∵≌∴∵中,∴∵∴=33°.【点睛】此题主要考查了全等三角形的性质和判定及三角形内角度数的计算,熟记概念是解题的关键.23、(1)见解析;(2),见解析【分析】(1)以点E为圆心,以EA为半径画弧交直线m于点M,连接EM,证明△AEB≌△MEF,根据全等三角形的性质证明;
(2)在直线m上截取AN=AB,连接NE,证明△NAE≌△ABE,根据全等三角形的性质得到EN=EB,∠ANE=∠ABE,证明EN=EF,等量代换即可.【详解】(1)如图1,以点E为圆心,以EA为半径画弧交直线m于点M,连接EM,∴,∵,∴,∵,∴,,∴,∴,∵,∴,∵,∴,∴,∴;(2).理由如下:如图2,在直线上截取,连接,∵,AB=BC,∴,∵,∴,,∵,∴,∴,,∵,,∴,∴,∴.【点睛】本题考查的是全等三角形的判定和性质、等腰三角形的判定和性质、平行线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.24、;画图见解析;点不在这个函数的图象上;函数图象与坐标轴围成的三角形面积为【分析】(1)直接运用待定系数法求解即可;(2)采用描点、连线的步骤即可解答;(3)将点代入解析式,看解析式是否成立即可;(4)先求出直线与坐标轴交点到原点的距离,然后运用三角形面积公式解答即可.【详解】解:设一次函数的解析式为一次函数的图象经过点和两点解得∴一次函数解析式为;的图象如图所示:由知,一次函数的表达式为将代入此函数表达式中得不在这个函数的图象上;由知,一次函数的表达式为令则令则该函数图象与坐标轴围成的三角形面积为.【点睛】本题主要考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征、一次函数的图象以及三角形的面积的求法等知识点,掌握运用待定系数法求函数解析式是解答本题的关键.25、.【解析】把A的坐标代入,把A、B的坐标代入,运用待定系数法即可求出两个一次函数的表达式.【详解】方程组即为,∵方程组的解为,∴点A的坐标为(2,1),把A的坐标代入,得,解得:,∴,把A、B的坐标代入,则解得:∴.所以,两个一次函数的表达式分别是.【点睛】本题考查了一次函数与二元一次方程组的关系,同时考查了用待定系数法求一次函数的表达式.26、(1)①见解析;②点C的坐标为(0,﹣4)或(0,4);(2)2【分析】(1)①证明△ABD≌△AOC(SAS),得出∠ABD=∠AOC=90°即可;②存在两种情况:当点D落在第二象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,﹣4);当点D落在第一象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浅析弱电安防系统综合防雷解决方案考核试卷
- 石棉在流体控制中的应用考核试卷
- 煤炭加工工艺对低质煤利用的影响考核试卷
- DB11T 589-2010 保健按摩操作规范
- 森林小屋课件教学课件
- 员工知识产权培训总结报告
- 员工技能培训道场方案
- 英语培训课件教学课件
- 淮阴工学院《沥青与沥青混合材料1》2022-2023学年第一学期期末试卷
- ATM机相关行业投资方案范本
- 习思想教材配套练习题 第七章 社会主义现代化建设的教育、科技、人才战略
- led显示屏工艺流程
- 建设项目设计管理方案
- 第13课《警惕可怕的狂犬病》 课件
- 仓库货物条码管理培训
- 第六章-中国早期社会学中的社区学派-《中国社会学史》必备
- 水产品质量安全知识讲座
- 技术协议范本通用模板
- 香港十日游旅游计划书
- 屠宰工培训课件
- 生命的价值课件
评论
0/150
提交评论