2022年重庆市綦江、长寿、巴南三校联盟数学八上期末教学质量检测试题含解析_第1页
2022年重庆市綦江、长寿、巴南三校联盟数学八上期末教学质量检测试题含解析_第2页
2022年重庆市綦江、长寿、巴南三校联盟数学八上期末教学质量检测试题含解析_第3页
2022年重庆市綦江、长寿、巴南三校联盟数学八上期末教学质量检测试题含解析_第4页
2022年重庆市綦江、长寿、巴南三校联盟数学八上期末教学质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列命题中,是真命题的是()①两条直线被第三条直线所截,同位角相等;②在同一平面内,垂直于同一直线的两条直线互相平行③三角形的三条高中,必有一条在三角形的内部④三角形的三个外角一定都是锐角A.①② B.②③ C.①③ D.③④2.直线沿轴向下平移个单位后,图象与轴的交点坐标是()A. B. C. D.3.若分式有意义,则应满足的条件是()A. B. C. D.4.在二次根式,,,中,最简二次根式的个数是()A.1个 B.2个 C.3个 D.4个5.小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是A.他离家8km共用了30min B.他等公交车时间为6minC.他步行的速度是100m/min D.公交车的速度是350m/min6.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,1.已知这组数据的平均数是4,则这组数据的中位数和众数分别是()A.2和2 B.4和2 C.2和3 D.3和27.直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1 B.5 C. D.5或8.马虎同学的家距离学校1000米,一天马虎同学从家去上学,出发5分钟后爸爸发现他的数学课本忘记拿了,立刻带上课本去追他,在距离学校100米的地方追上了他,已知爸爸的速度是马虎同学速度的3倍,设马虎同学的速度为米/分钟,列方程为()A. B.C. D.9.化简式子的结果为()A. B. C. D.10.把分式中的a和b都变为原来的2倍,那么该分式的值()A.变为原来的2倍 B.变为原来的4倍 C.不变 D.变为原来的8倍二、填空题(每小题3分,共24分)11.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,则关于x的方程3x+b=ax﹣2的解为x=_____.12.计算的结果是________.13.已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.14.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=°.15.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、E的面积分别为2,5,1,1.则正方形D的面积是______.16.把因式分解的结果是______.17.用四舍五入法把1.23536精确到百分位,得到的近似值是_____.18.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.三、解答题(共66分)19.(10分)把下列各式分解因式:(1)(2)20.(6分)已知:如图,四边形中,分别是的中点.求证:四边形是平行四边形.21.(6分)先化简,再求值:,其中,.22.(8分)已知与成正比例,当时,.(1)求与的函数关系式;(2)当时,求的取值范围.23.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=65°,求∠NMA的度数;(2)连接MB,若AC=12cm,BC=8cm.①求△MBC的周长;②在直线MN上是否存在点P,使PB+CP的值最小,若存在,标出点P的位置并求PB+CP的最小值,若不存在,说明理由;③设D为BC的中点.求证:.24.(8分)如图,在中,点为边上一点,,,,求的度数.25.(10分)如图,已知等腰顶角.(1)在AC上作一点D,使(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:是等腰三角形.26.(10分)已知:等边中.(1)如图1,点是的中点,点在边上,满足,求的值.(2)如图2,点在边上(为非中点,不与、重合),点在的延长线上且,求证:.(3)如图3,点为边的中点,点在的延长线上,点在的延长线上,满足,求的值.

参考答案一、选择题(每小题3分,共30分)1、B【解析】两条平行直线被第三条直线所截,同位角相等,所以①错误;在同一平面内,垂直于同一直线的两条直线互相平行,所以②正确;三角形的三条高中,必有一条在三角形的内部,所以③正确;三角形的三个外角最多只有一个锐角,所以④错误.故选B.2、D【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式,再求出图象与坐标轴交点即可.【详解】直线沿轴向下平移个单位则平移后直线解析式为:当y=0时,则x=2,故平移后直线与x轴的交点坐标为:(2,0).故选:D.【点睛】此题主要考查了一次函数平移变换,熟练掌握一次函数平移规律是解题关键.3、B【分析】根据分式有意义的条件:分母不能为0即可得出结论【详解】解:∵分式有意义,∴∴故选:B【点睛】本题考查的是分式有意义的条件,当分母不为0时,分式有意义.4、A【分析】根据最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式进行解答.【详解】,,都不是最简二次根式;符合最简二次根式的要求.综上,最简二次根式的个数是1个,故选:A.【点睛】本题考查了最简二次根式,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5、D【解析】A、依题意得他离家8km共用了30min,故选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故选项正确;C、他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故选项正确;D、公交车(30-16)min走了(8-1)km,故公交车的速度为7000÷14=500m/min,故选项错误.故选D.6、D【解析】试题分析:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,1),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选D.考点:中位数;算术平均数;众数7、D【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边==;当第三边为斜边时,3和4为直角边,第三边==5,故选:D.【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.8、D【分析】设马虎的速度为x米/分,则爸爸的速度为3x米/分,由题意得等量关系:马虎走所用时间=马虎爸爸所用时间+5分钟,根据等量关系列出方程即可.【详解】解:马虎的速度为x米/分,则爸爸的速度为3x米/分,由题意得.

故选D.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.9、D【分析】根据二次根式有意义的条件即可求出a的取值范围,然后根据二次根式的除法公式和分母有理化化简即可.【详解】解:,即,故选:D.【点睛】此题考查的是二次根式的化简,掌握二次根式有意义的条件、二次根式的除法公式和分母有理化是解题关键.10、C【分析】根据分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即可判断.【详解】解:分式中的a和b都变为原来的2倍可得,则该分式的值不变.

故选:C.【点睛】本题考查的知识点是分式的基本性质,解题的关键是熟练的掌握分式的基本性质.二、填空题(每小题3分,共24分)11、﹣1.【分析】直线y=3x+b与y=ax-1的交点的横坐标为-1,则x=-1就是关于x的方程3x+b=ax-1的解.【详解】∵直线y=3x+b与y=ax﹣1的交点的横坐标为﹣1,∴当x=﹣1时,3x+b=ax﹣1,∴关于x的方程3x+b=ax﹣1的解为x=﹣1.故答案为﹣1.12、【分析】由题意根据运算顺序,先把各个分式进行乘方运算,再进行分式的乘除运算即可得出答案.【详解】解:故答案为:.【点睛】本题主要考查分式的乘除法,解题时注意分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.13、x1<x1【解析】由k=-1-a1,可得y随着x的增大而减小,由于1>-1,所以x1<x1.【详解】∵y=(-1-a1)x+1,k=-1-a1<0,∴y随着x的增大而减小,∵1>-1,∴x1<x1.故答案为:x1<x1【点睛】本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.14、50【解析】试题分析:由AC=AD=DB,可知∠B=∠BAD,∠ADC=∠C,设∠ADC=x,可得∠B=∠BAD=x,因此可根据三角形的外角,可由∠BAC=105°,求得∠DAC=105°-x,所以在△ADC中,可根据三角形的内角和可知∠ADC+∠C+∠DAC=180°,因此2x+105°-x=180°,解得:x=50°.考点:三角形的外角,三角形的内角和15、2【分析】设中间两个正方形和正方形D的面积分别为x,y,z,然后有勾股定理解答即可.【详解】解:设中间两个正方形和正方形D的面积分别为x,y,z,则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1+z=1;即正方形D的面积为:z=2.故答案为:2.【点睛】本题考查了勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16、3a(b-1)1【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=3a(b1-1b+1)=3a(b-1)1,

故答案为:3a(b-1)1.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17、1.1【分析】把千分位上的数字5进行四舍五入即可.【详解】解:1.23536精确到百分位,得到的近似值是1.1.故答案为1.1.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.18、50°.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.三、解答题(共66分)19、(1);(2)【分析】(1)先提取公因式,再利用平方差公式,分解因式,即可;(2)先提取公因式,再利用完全平方公式,分解因式,即可.【详解】(1);(2);【点睛】本题主要考查分解因式,掌握提取公因式法和公式法分解因式,是解题的关键.20、见解析.【分析】连接BD,利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【详解】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.【点睛】此题主要考查了中点四边形,关键是掌握平行四边形的判定和三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.21、2a2-7ab+2b2;.【分析】根据整式的乘法公式与运算法则进行化简,再代入a,b即可求解.【详解】==2a2-7ab+2b2把,代入原式=2×-7×(-1)+2×9=+7+18=.【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的乘法运算法则.22、(1)y=2x+2(2)时,x>2【分析】(1)根据正比例函数的定义设y-2=kx(k≠0)然后把x,y的值代入求出k,即可求出解析式;(2)根据(1)中的解析式,判断即可.【详解】(1)∵y-2与x成正比例函数∴设y-2=kx(k≠0)将x=2,y=6代入得,2k=6-2k=2∴y-2=2x∴y=2x+2(2)根据函数解析式y=2x+2得到y随x的增加而增大∵y=6时x=2∴时,x>2.【点睛】此题主要考查了待定系数法求一次函数解析式及判断函数取值范围,熟练掌握相关概念是解题的关键.23、(1);(2)①△MBC的周长为20cm;②点P位置见解析,最小值为12cm;理由见解析;③证明见解析.【分析】(1)先根据等腰三角形的性质和三角形的内角和定理求出∠A的度数,再根据直角三角形的性质求解即可;(2)①根据线段垂直平分线的性质可得AM=BM,再根据三角形的周长和线段间的等量关系解答即可;②由于点B、A关于直线MN对称,所以AC与MN的交点即为所求的点P,于是PB+CP的最小值即为AC的长,据此解答即可;③方法一:如图1,取AC中点G,连接GD,根据三角形的中位线定理可得GD∥AB,GD=BN,进而可得∠A=∠DGC,在△GDM中,根据等腰三角形的性质和角的代换可得∠GMD>∠DGM,进一步即可证得结论;方法二:如图2,延长MD至H,使DH=DM,连接BH,根据SAS可证△MDC≌△HDB,可得BH=MC,然后根据三角形的三边关系和线段间的等量关系可得AC>2DM,进一步即可证得结论.【详解】(1)解:∵AB=AC,∴∠ABC=∠C=65°,∴,∵MN⊥AB,∴∠ANM=90°,∴;(2)解:①由MN垂直平分AB得:AM=BM,于是△MBC的周长=BM+MC+BC=AM+MC+BC=AC+BC=12+8=20(cm);②解:∵点B、A关于直线MN对称,所以AC与MN的交点M即为PB+CP值最小时的点P,如图,且最小值为AC=12cm;③证明:方法一:如图1,取AC中点G,连接GD,则GD∥AB,且,∴∠A=∠DGC,在△ABC中,AB=AC=12,BC=8,∴AB>BC,∴∠C>∠A,在△GDM中,DM所对的角为∠DGM=∠A,DG所对的角为∠GMD=∠C+∠MDC>∠A,即∠GMD>∠DGM,∴GD>DM,即MD<BN;方法二:如图2,延长MD至H,使DH=DM,连接BH,∵DH=DM,∠MDC=∠HDB,CD=BD,∴△MDC≌△HDB(SAS),∴BH=MC,在△BHM中,BH+BM>HM,即MC+AM>2DM,∴AC>2DM,即2BN>2DM,∴DM<BN.【点睛】本题考查了等腰三角形的性质、线段垂直平分线的性质、三角形的内角和定理、三角形的中位线定理、全等三角形的判定和性质、求两线段的最小值以及三角形的边角关系等知识,综合性较强、但难度不大,正确作出辅助线、熟练掌握上述知识是解题的关键.24、60°【分析】先根据三角形的内角和求出的度数,再利用三角形的内角和求出的度数,作差即可求出答案.【详解】解:∵在中,,,∴∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论