泰兴市黄桥东区苏科版七级下期中数学试卷含答案解析初一数学试卷分析_第1页
泰兴市黄桥东区苏科版七级下期中数学试卷含答案解析初一数学试卷分析_第2页
泰兴市黄桥东区苏科版七级下期中数学试卷含答案解析初一数学试卷分析_第3页
泰兴市黄桥东区苏科版七级下期中数学试卷含答案解析初一数学试卷分析_第4页
泰兴市黄桥东区苏科版七级下期中数学试卷含答案解析初一数学试卷分析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2015-2016学年江苏省泰州市泰兴市黄桥东区七年级(下)期中数学试卷一、选择题(本大题共6小题,每题3分)1.下列计算正确的是()A.a2+a2=a4 B.2a﹣a=2 C.(ab)2=a2b2 D.(a2)3=a52.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6 B.2m﹣8 C.2m D.﹣2m3.已知三角形两边的长分别是4和10,则此三角形的周长可能是()A.19 B.20 C.25 D.304.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4y2=(x+4y)(x﹣4y) D.x2﹣x﹣6=(x+2)(x﹣3)5.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()个.A.1个 B.2个 C.3个 D.4个6.如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有()个.A.1 B.2 C.3 D.4二、填空题(共10小题,每小题3分,满分30分)7.计算(﹣a4)2的结果为.8.若3m=5,3n=6,则3m﹣n的值是..10.在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是.11.已知x+y=3,x2+y2﹣3xy=4,则x3y+xy3的值为.12.已知等腰三角形一边等于5,另一边等于9,它的周长是.13.一个n边形的所有内角与所有外角的和是900°,那么n=.14.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.15.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=.16.如图,它是由6个面积为1的小正方形组成的长方形,点A,B,C,D,E,F是小正方形的顶点,以这六个点中的任意三点为顶点,可以组成个面积是1的三角形.三、解答题(本大题共10小题,102分,写出必要的计算过程、推理步骤或文字说明)17.计算(1)(﹣)﹣1﹣1﹣2×(﹣22)﹣()﹣2(2)(﹣a2)3﹣(﹣a3)2+2a5•(﹣a)(3)(x﹣y)2﹣(x+2y)(x﹣2y)(4)(3﹣2x+y)(3+2x﹣y)18.因式分解(1)16﹣4x2(2)4ab2﹣4a2b﹣b3(3)(x2+4)2﹣16x2(4)49(m﹣n)2﹣9(m+n)2.19.先化简再求值(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=,b=.20.(1)已知2x=8y+2,9y=3x﹣9,求x+2y的值.(2)已知(a+b)2=6,(a﹣b)2=2,试比较a2+b2与ab的大小.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的位置如图所示,将△ABC先向右平移5个单位得△A1B1C1,再向上平移2个单位得△A2B2C2.(1)画出平移后的△A1B1C1及△A2B2C2;(2)平移过程中,线段AC扫过的面积是多少?22.(1)填空21﹣20=2(),22﹣21=2(),23﹣22=2()…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22014+22015.23.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.24.如图,DE⊥AB,垂足为D,EF∥AC,∠A=30°,(1)求∠DEF的度数;(2)连接BE,若BE同时平分∠ABC和∠DEF,问EF与BF垂直吗?为什么?25.(1)已知:如图1,BE⊥DE,∠1=∠B,∠2=∠D,试确定AB与CD的位置关系,并说明理由.(2)若图形变化为如图2、图3所示,且满足∠1+∠2=90°,那么AB与CD还满足上述关系吗?若满足,选择一个图形进行证明.26.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.2015-2016学年江苏省泰州市泰兴市黄桥东区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每题3分)1.下列计算正确的是()A.a2+a2=a4 B.2a﹣a=2 C.(ab)2=a2b2 D.(a2)3=a5【考点】幂的乘方与积的乘方;合并同类项.【分析】根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、2a﹣a=a,故本选项错误;C、(ab)2=a2b2,故本选项正确;D、(a2)3=a6,故本选项错误;故选:C.2.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6 B.2m﹣8 C.2m D.﹣2m【考点】整式的混合运算—化简求值.【分析】(a﹣2)(b﹣2)=ab﹣2(a+b)+4,然后代入求值即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4=﹣4﹣2m+4=﹣2m.故选D.3.已知三角形两边的长分别是4和10,则此三角形的周长可能是()A.19 B.20 C.25 D.30【考点】三角形三边关系.【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是4和10,∴10﹣4<x<10+4,即6<x<14.则三角形的周长:20<L<28,C选项25符合题意,故选C.4.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4y2=(x+4y)(x﹣4y) D.x2﹣x﹣6=(x+2)(x﹣3)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、没把一个多项式转化成几个整式积,故C错误;D、把一个多项式转化成几个整式积,故D正确;故选:D.5.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()个.A.1个 B.2个 C.3个 D.4个【考点】平移的性质;同位角、内错角、同旁内角;平行线之间的距离.【分析】利用平移的性质、三线八角及平行线之间的距离的定义等知识逐一判断后即可确定正确的选项.【解答】解:①任何非0实数的零次方都等于1,故错误;②如果两条平行直线被第三条直线所截,那么同位角相等,故错误;③一个图形和它经过平移所得的图形中,两组对应点的连线平行或共线,故本小题错误;④平行线间的距离处处相等,正确,错误的有3个,故选C.6.如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有()个.A.1 B.2 C.3 D.4【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】根据角平分线的定义求得∠1=∠2.然后利用三角形内角和定理得到∠2=∠5,进而证得∠5=∠1.【解答】解:①根据角平分线的性质易求∠1=∠2;②∵△ABC的三条内角平分线相交于点I,∴∠BIC=180°﹣(∠3+∠2)=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠BAC;∵AI平分∠BAC,∴∠DAI=∠DAE.∵DE⊥AI于I,∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC.∴∠BIC=∠BDI.∴180°﹣(∠4+∠5)=180°﹣(∠2+∠3).又∵∠3=∠4,∴∠2=∠5,∴∠5=∠1,综上所述,图中与∠ICE一定相等的角(不包括它本身)有2个.故选:B.二、填空题(共10小题,每小题3分,满分30分)7.计算(﹣a4)2的结果为a8.【考点】幂的乘方与积的乘方.【分析】先根据积的乘方,把积中每一个因式分别乘方,再把所得的幂相乘;再根据幂的乘方,底数不变指数相乘,从而得出结果.【解答】解:原式=(﹣a4)2的=(﹣1)2(a4)2=a8,故答案为a8.8.若3m=5,3n=6,则3m﹣n的值是.【考点】同底数幂的除法.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】×10﹣6.×10﹣6.10.在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是8.【考点】多项式乘多项式.【分析】先运用多项式的乘法法则进行计算,再根据运算结果中x2的系数是﹣6,列出关于a的等式求解即可.【解答】解:(x+1)(2x2﹣ax+1)=2x3﹣ax2+x+2x2﹣ax+1=2x3+(﹣a+2)x2+(1﹣a)x+1;∵运算结果中x2的系数是﹣6,∴﹣a+2=﹣6,解得a=8,故答案为:8.11.已知x+y=3,x2+y2﹣3xy=4,则x3y+xy3的值为7.【考点】因式分解的应用.【分析】根据已知条件,运用完全平方公式求得xy的值,再进一步运用因式分解的方法整体代入求得代数式的值.【解答】解:∵x+y=3,∴(x+y)2=9,即x2+y2+2xy=9①,又x2+y2﹣3xy=4②,①﹣②,得5xy=5,xy=1.∴x2+y2=4+3xy=7.∴x3y+xy3=xy(x2+y2)=7.故答案为7.12.已知等腰三角形一边等于5,另一边等于9,它的周长是19或23.【考点】等腰三角形的性质;三角形三边关系.【分析】因为题中没有确定底和腰,故要分两种情况进行做题,即把边长为5的作为腰和把边长为9的作为腰,然后分别求出周长.【解答】解:分两种情况:①当边的长为5的为腰时,周长=5+5+9=19;②当边的长为9的为腰时,周长=9+9+5=23.经验证这两种情况都可组成三角形,都成立.故答案为:19或23.13.一个n边形的所有内角与所有外角的和是900°,那么n=5.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,即可求得多边形的内角和的度数,依据多边形的内角和公式即可求解.【解答】解:多边形的内角和是:900﹣360=540°,设多边形的边数是n,则(n﹣2)•180=540,解得:n=5.故答案为5.14.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=22.5°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE=2∠DCE=∠A+∠ABC,2∠DCE=2(∠D+∠DBC)=2∠D+∠ABC,推出∠A+∠ABC=2∠D+∠ABC,得出∠A=2∠D,即可求出答案.【解答】解:∵BD平分∠ABC,CD平分∠ACE,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠ACE=2∠DCE=∠A+∠ABC,2∠DCE=2(∠D+∠DBC)=2∠D+∠ABC,∴∠A+∠ABC=2∠D+∠ABC,∴∠A=2∠D,∵∠A=45°,∴∠D=22.5°,故答案为:22.5.15.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=80°.【考点】三角形内角和定理.【分析】根据三角形的内角和定理,及角平分线上的性质先计算∠ABC+∠ACB的度数,从而得出∠A的度数.【解答】解:如图,连接BC.∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABE=∠DBE=∠ABD,∠ACF=∠DCF=∠ACD,又∠BDC=140°,∠BGC=110°,∴∠DBC+∠DCB=40°,∠GBC+∠GCB=70°,∴∠EBD+∠FCD=70°﹣40°=30°,∴∠ABE+∠ACF=30°,∴∠ABE+∠ACF+∠GBC+∠GCB=70°+30°=100°,即∠ABC+∠ACB=100°,∴∠A=80°.故答案为:80°.16.如图,它是由6个面积为1的小正方形组成的长方形,点A,B,C,D,E,F是小正方形的顶点,以这六个点中的任意三点为顶点,可以组成10个面积是1的三角形.【考点】三角形的面积.【分析】根据三角形的面积公式,结合图形,则面积是1的三角形,即构造底1高2的三角形或底2高1的三角形或两条直角边是的等腰直角三角形.【解答】解:根据题意,得面积是1的三角形有:△ABD、△ABE、△ABF、△ACD、△FCD、△AEF、△BEF、△ADE、△BDE、△BCE共10个.三、解答题(本大题共10小题,102分,写出必要的计算过程、推理步骤或文字说明)17.计算(1)(﹣)﹣1﹣1﹣2×(﹣22)﹣()﹣2(2)(﹣a2)3﹣(﹣a3)2+2a5•(﹣a)(3)(x﹣y)2﹣(x+2y)(x﹣2y)(4)(3﹣2x+y)(3+2x﹣y)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据负整数指数幂的意义计算;(2)先进行乘方运算,然后合并即可;(3)先利用完全平方公式和平方差公式展开,然后合并即可;(4)先变形得到原式=[3+(2x﹣y)][3﹣(2x﹣y)],然后利用平方差公式和完全平方公式计算.【解答】解:(1)原式=﹣4﹣1×(﹣4)﹣4=﹣4+4﹣4=﹣4;(2)原式=﹣a6﹣a6﹣2a6=﹣4a6;(3)原式=x2﹣xy+y2﹣(x2﹣4y2)=x2﹣xy+y2﹣x2+y2=2y2﹣xy;(4)原式=[3+(2x﹣y)][3﹣(2x﹣y)]=32﹣(2x﹣y)2=9﹣(4x2﹣4xy+y2)=9﹣4x2+4xy﹣y2.18.因式分解(1)16﹣4x2(2)4ab2﹣4a2b﹣b3(3)(x2+4)2﹣16x2(4)49(m﹣n)2﹣9(m+n)2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式4,进而利用平方差公式分解因式得出答案;(2)首先提取公因式﹣b,进而利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案;(4)直接利用平方差公式分解因式得出答案.【解答】解:(1)16﹣4x2=4(4﹣x2)=4(2+x)(2﹣x);(2)4ab2﹣4a2b﹣b3=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2;(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)49(m﹣n)2﹣9(m+n)2.=[7(m﹣n)+3(m+n)][7(m﹣n)﹣3(m+n)]=(10m﹣4n)(4m﹣10n)=4(5m﹣2n)(2m﹣5n).19.先化简再求值(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=,b=.【考点】整式的混合运算—化简求值.【分析】原式前两项利用完全平方公式展开,最后一项利用单项式乘多项式法则计算,去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2﹣9a2+6ab﹣b2+5a2﹣5ab=5ab,当a=,b=时,原式=5××=.20.(1)已知2x=8y+2,9y=3x﹣9,求x+2y的值.(2)已知(a+b)2=6,(a﹣b)2=2,试比较a2+b2与ab的大小.【考点】完全平方公式.【分析】(1)根据幂的乘方运算法则将原式变形,进而求出x,y的值,进而代入求出答案;(2)直接利用完全平方公式展开原式,进而计算得出答案.【解答】解:(1)∵2x=8y+2,9y=3x﹣9,∴2x=23y+6,32y=3x﹣9,∴,解得:∴x+2y=×15+2×3=11;(2)∵(a+b)2=6,(a﹣b)2=2,∴a2+2ab+b2=6,a2﹣2ab+b2=2,解得:a2+b2=4,ab=1,∴a2+b2>ab.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的位置如图所示,将△ABC先向右平移5个单位得△A1B1C1,再向上平移2个单位得△A2B2C2.(1)画出平移后的△A1B1C1及△A2B2C2;(2)平移过程中,线段AC扫过的面积是多少?【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1及△A2B2C2即可;(2)根据线段AC扫过的面积=S平行四边形ACC1A1+S平行四边形A1C1C2A2即可得出结论.【解答】解:(1)如图所示;(2)线段AC扫过的面积=S平行四边形ACC1A1+S平行四边形A1C1C2A2=5×4+2×4=20+8=28.答:平移过程中,线段AC扫过的面积是28.22.(1)填空21﹣20=2(),22﹣21=2(),23﹣22=2()…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22014+22015.【考点】规律型:数字的变化类.【分析】(1)根据幂的运算方法,可得21﹣20=2﹣1=1=20,22﹣21=4﹣2=2=21,23﹣22=8﹣4=4=22,据此解答即可.(2)根据(1)中式子的规律,可得2n﹣2n﹣1=2n﹣1;然后根据幂的运算方法,证明第n个等式成立即可.(3)根据2n﹣2n﹣1=2n﹣1,求出算式20﹣21﹣22﹣…﹣22014+22015的值是多少即可.【解答】解:(1)21﹣20=2﹣1=1=20,22﹣21=4﹣2=2=21,23﹣22=8﹣4=4=22.(2)∵21﹣20=20,22﹣21=21,23﹣22=22,∴2n﹣2n﹣1=2n﹣1;证明:∵2n﹣2n﹣1=2×2n﹣1﹣2n﹣1=2n﹣1×(2﹣1)=2n﹣1,∴2n﹣2n﹣1=2n﹣1成立.(3)20﹣21﹣22﹣…﹣22014+22015=22015﹣22014﹣22013﹣…﹣21+20=22014﹣22013﹣…﹣21+20=22013﹣22012﹣…﹣21+20=…=22﹣21+20=21+20=2+1=3故答案为:0、1、2.23.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.【考点】完全平方公式;非负数的性质:偶次方;三角形三边关系.【分析】(1)先利用完全平方公式整理成平方和的形式,然后根据非负数的性质列式求出x、y的值,然后代入代数式计算即可;(2)先利用完全平方公式整理成平方和的形式,再利用非负数的性质求出a、b的值,然后利用三角形的三边关系即可求解.【解答】解:(1)x2+2y2﹣2xy+4y+4=x2﹣2xy+y2+y2+4y+4=(x﹣y)2+(y+2)2=0,∴x﹣y=0,y+2=0,解得x=﹣2,y=﹣2,∴xy=(﹣2)﹣2=;(2)∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,a﹣5=0,b﹣4=0,解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<9.24.如图,DE⊥AB,垂足为D,EF∥AC,∠A=30°,(1)求∠DEF的度数;(2)连接BE,若BE同时平分∠ABC和∠DEF,问EF与BF垂直吗?为什么?【考点】平行线的性质;垂线.【分析】(1)如图,利用直角三角形的性质求得∠AOD=60°,然后利用对顶角相等、平行线的性质求得∠DEF=120°;(2)EF与BF垂直.理由如下:根据角平分线的性质得到∠BEF=∠BED=DEF=60°.则根据直角三角形的性质易求∠DBE=30°.然后由三角形内角和定理求得∠F=90°,即EF与BF垂直.【解答】解:(1)如图,∵DE⊥AB,∠A=30°,∴∠AOD=60°.∵∠COE=∠AOD=60°,EF∥AC,∴∠DEF+∠COE=180°,∴∠DEF=120°;(2)EF与BF垂直.理由如下:由(1)知,∠DEF=120°.∵BE平分∠DEF,∴∠BEF=∠BED=DEF=60°.又∵DE⊥AB,∴∠DBE=30°.∵AE平分∠ABC,∴∠EBF=30°,∴∠F=180°﹣∠EBF﹣BEF=90°,即EF与BF垂直.25.(1)已知:如图1,BE⊥DE,∠1=∠B,∠2=∠D,试确定AB与CD的位置关系,并说明理由.(2)若图形变化为如图2、图3所示,且满足∠1+∠2=90°,那么AB与CD还满足上述关系吗?若满足,选择一个图形进行证明.【考点】平行线的判定与性质.【分析】(1)过点E作EN∥AB,根据平行线的性质得到∠BEN=∠B,等量代换得到∠BEN=∠1,推出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论