版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形 B.矩形 C.正八边形 D.正六边形2.等腰△ABC中,∠C=50°,则∠A的度数不可能是()A.80° B.50° C.65° D.45°3.下列命题是真命题的是()A.三角形的一个外角大于任何一个内角B.如果两个角相等,那么它们是内错角C.如果两个直角三角形的面积相等,那么它们的斜边相等D.直角三角形的两锐角互余4.若分式的值为正数,则的取值范围是()A. B. C. D.且5.如图,A、C是函数的图象上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D.记的面积为,的面积为,则和的大小关系是()A. B.C. D.由A、C两点的位置确定6.如图,在一单位长度为的方格纸上,依如所示的规律,设定点、、、、、、、,连接点、、组成三角形,记为,连接、、组成三角形,记为,连、、组成三角形,记为(为正整数),请你推断,当为时,的面积()A. B. C. D.7.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A.15,16 B.15,15 C.15,15.5 D.16,158.中,的对边分别是,且,则下列说法正确的是()A.是直角 B.是直角 C.是直角 D.是锐角9.下列调查适合抽样调查的是()A.审核书稿中的错别字 B.企业招聘,对应聘人员进行面试C.了解八名同学的视力情况 D.调查某批次汽车的抗撞击能力10.下列图形中,不是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,等边中,边上的高,点是高上的一个动点,点是边的中点,在点运动的过程中,存在的最小值,则这个最小值是___________.12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.13.如图,在中,,点是边上一动点(不与点重合),过点作的垂线交于点,点与点关于直线对称,连接,当是等腰三角形时,的长为__________.14.如图,在平面直角坐标系中,的直角顶点的坐标为
,点在轴正半轴上,且.将先绕点逆时针旋转,再向左平移3个单位,则变换后点的对应点的坐标为______.15.关于的一次函数,其中为常数且.①当时,此函数为正比例函数.②无论取何值,此函数图象必经过.③若函数图象经过,(,为常数),则.④无论取何值,此函数图象都不可能同时经过第二、三、四象限.上述结论中正确的序号有________.16.一根木棒能与长为和的两根木棒钉成一个三角形,则这根木棒的长度的取值范围是____________.17.若,,则______.18.已知点,点关于轴对称,点在第___________象限.三、解答题(共66分)19.(10分)探究应用:(1)计算:___________;______________.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含字母的等式表示该公式为:_______________.(3)下列各式能用第(2)题的公式计算的是()A.B.C.D.20.(6分)观察下列各式:=1+-=;=1+-=;=1+-=.(1)请你根据上面三个等式提供的信息,猜想:的值;(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式,并验证;(3)利用上述规律计算:.21.(6分)化简(1)(2)22.(8分)如图,直线y=-x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B'处.(1)求A、B两点的坐标;(2)求S△ABO·(3)求点O到直线AB的距离.(4)求直线AM的解析式.23.(8分)如图所示,四边形OABC是长方形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,已知长方形OABC的周长为1.(1)若OA长为x,则B点坐标为_____;(2)若A点坐标为(5,0),求点D和点E的坐标.24.(8分)如图,在△ABC中,∠B=90,∠C=30°,AB=6cm,BC=6cm,动点P从点B开始沿边BA、AC向点C以3cm/s的速度移动,动点Q从点B开始沿边BC向点C以cm/s的速度移动,动点P、Q同时出发,到点C运动结束.设运动过程中△BPQ的面积为y(cm2),运动时间为t(s).(1)点P运动到点A,t=(s);(2)请你用含t的式子表示y.25.(10分)如图,中,是高,点是上一点,,,分别是上的点,且.(1)求证:.(2)探索和的关系,并证明你的结论.26.(10分)计算.(1).(2).
参考答案一、选择题(每小题3分,共30分)1、C【解析】因为正八边形的每个内角为,不能整除360度,故选C.2、D【分析】分类讨论后,根据三角形内角和定理及等腰三角形的两个底角相等解答即可.【详解】当∠C为顶角时,则∠A=(180°﹣50°)=65°;当∠A为顶角时,则∠A=180°﹣2∠C=80°;当∠A、∠C为底角时,则∠C=∠A=50°;∴∠A的度数不可能是45°,故选:D.【点睛】本题考查了三角形内角和定理,等腰三角形的性质,掌握等腰三角形两底角相等的性质是解题的关键.3、D【分析】根据三角形的外角性质,平行线的判定和直角三角形的性质对各选项分析判断后利用排除法求解.【详解】A、因为三角形的外角大于任何一个与它不相邻的内角,故本选项错误;B.如果两个角相等,那么它们不一定是内错角,故选项B错误;C.如果两个直角三角形的面积相等,那么它们的斜边不一定相等,故选项C错误;D.直角三角形的两锐角互余.正确.故选:D.【点睛】本题考查点较多,熟练掌握概念,定理和性质是解题的关键.4、D【分析】若的值是正数,只有在分子分母同号下才能成立,即x+4>1,且x≠1,因而能求出x的取值范围.【详解】∵x≠1,∴.∵1,∴x+4>1,x≠1,∴x>﹣4且x≠1.故选:D.【点睛】本题考查了分式值的正负性问题,若对于分式(b≠1)>1时,说明分子分母同号;分式(b≠1)<1时,分子分母异号,注意此题中的x≠1.5、C【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=k|.【详解】由题意得:S1=S2=|k|=.故选:C.【点睛】本题主要考查了反比例函数y=中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,是经常考查的一个知识点;这里体现了数形结合的思想.6、A【分析】根据图形计算发现:第一个三角形的面积是,第二个三角形的面积是,第三个图形的面积是,即第个图形的面积是,即可求得,△的面积.【详解】由题意可得规律:第个图形的面积是,所以当为时,的面积.故选:A.【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.7、C【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.8、C【分析】根据勾股定理逆定理判断即可.【详解】解:如果a2-b2=c2,则a2=b2+c2,则△ABC是直角三角形,且∠A=90°.
故选:C.【点睛】本题考查的是直角三角形的判定定理,判断三角形是否为直角三角形可通过三角形的角、三边的关系进行判断.9、D【分析】根据“抽样调查”和“全面调查”各自的特点结合各选项中的实际问题分析解答即可.【详解】A选项中,“审核书稿中的错别字”适合使用“全面调查”;B选项中,“企业招聘,对应聘人员进行面试”适合使用“全面调查”;C选项中,“了解八名同学的视力情况”适合使用“全面调查”;D选项中,“调查某批次汽车的抗撞击能力”适合使用“抽样调查”.故选D.【点睛】熟知“抽样调查和全面调查各自的特点和适用范围”是解答本题的关键.10、A【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、不是轴对称图形,故本选项正确;
B、是轴对称图形,故本选项错误;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误;
故选:A.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每小题3分,共24分)11、1【分析】先连接CE,再根据EB=EC,将FE+EB转化为FE+CE,最后根据两点之间线段最短,求得CF的长,即为FE+EB的最小值.【详解】解:连接CE,
∵等边△ABC中,AD是BC边上的中线
∴AD是BC边上的高线,即AD垂直平分BC,
∴EB=EC,
当C、F、E三点共线时,EF+EC=EF+BE=CF,
∵等边△ABC中,F是AB边的中点,
∴AD=CF=1,
∴EB+EF的最小值为1,
故答案为:1.【点睛】本题主要考查了等边三角形的性质,熟练掌握和运用等边三角形的性质以及轴对称的性质是解决本题的关键.解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.12、3【分析】由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】由题意可知:中间小正方形的边长为:a-b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a-b)2=25,∴(a−b)2=25-16=9,∴a-b=3,故答案为3.【点睛】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.13、或【分析】由勾股定理求出BC,分两种情况讨论:(1)当,根据等腰直角三角形的性质得出BF的长度,即可求出BD的长;(2)当,根据求出BF的长度,即可求出BD的长.【详解】∵等腰中,∴分两种情况(1)当,∴∴∴∵直线l垂直平分BF∴(2)当,∵直线l垂直平分BF∴故答案为:或.【点睛】本题考查了三角形线段长的问题,掌握勾股定理以及等腰直角三角形的性质是解题的关键.14、【解析】先求出点A的坐标,然后根据旋转的性质求出旋转后点A的对应点的坐标,继而根据平移的性质即可求得答案.【详解】∵点的坐标为,,∴点的坐标为,如图所示,将先绕点逆时针旋转90°,则点的坐标为,
再向左平移3个单位长度,则变换后点的对应点坐标为,故答案为:.
【点睛】本题考查了平移变换、旋转变换,熟练掌握平移的性质以及旋转的性质是解题的关键.15、②③④【分析】根据一次函数知识依次判断各项即可.【详解】①当k=0时,则,为一次函数,故①错误;②整理得:,∴x=2时,y=5,∴此函数图象必经过,故②正确;③把,代入中,得:,②-①得:,解得:,故③正确;④当k+2<0时,即k<-2,则-2k+1>5,∴此函数图象都不可能同时经过第二、三、四象限,故④正确;故答案为:②③④.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数的性质定理是解决本题的关键.16、5<<13【分析】设这根木棒的长度为,根据在三角形中,任意两边之和大于第三边,得<4+9=13,任意两边之差小于第三边,得>9-4=5,所以这根木棒的长度为5<<13.【详解】解:这根木棒的长度的取值范围是9-4<<9+4,即5<<13.故答案为5<<13.【点睛】本题考查了三角形得三边关系.在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.17、15【分析】根据同底数幂乘法法则来求即可.【详解】解:3×5=15【点睛】本题考查的是同底数幂的乘法法则,同底数幂相乘,底数不变指数相加.18、四【分析】关于x轴对称,则横坐标相等,纵坐标互为相反数,求出a,b的值即可.【详解】已知点,点关于轴对称,则,解得,则点在第四象限.【点睛】本题是对坐标关于x轴对称的考查,熟练掌握二元一次方程组是解决本题的关键.三、解答题(共66分)19、(1);(2);(3)C【分析】(1)根据多项式与多项式相乘的法则计算以后,合并同类项即可;(2)根据上面两题得出公式即可;(3)根据归纳的公式的特点进行判断即可.【详解】(1)(x+1)(x2-x+1)=x3-x2+x+x2-x+1=x3+1,(2x+y)(4x2-2xy+y2)=8x3-4x2y+2xy2+4x2y-2xy2+y3=8x3+y3,(2)(a+b)(a2-ab+b2)=a3+b3;(3)由(2)可知选(C);故答案为:(1)x3+1;8x3+y3;(2)(a+b)(a2-ab+b2)=a3+b3;(3)C.【点睛】本题考查多项式乘以多项式,同时考查学生的观察归纳能力,属于基础题型.20、(1);(2);(3).【解析】(1)根据提供的信息,即可解答;(2)根据规律,写出等式;(3)根据(2)的规律,即可解答.【详解】(1)=;(2).验证:等式左边===等式右边.(3)原式=.【点睛】本题考查了二次根式的性质与化简,解题的关键是理解题中的信息,找到规律.21、(1);(2)【分析】(1)原式先计算乘方运算,再计算乘除运算即可得到结果;(2)原式括号中两项通分后利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】解:(1)原式;(2)原式.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22、(1)A(6,0),B(0,8);(2)24;(1)4.8;(4)y=-x+1.【分析】(1)由解析式令x=0,y=x+8=8,即B(0,8),令y=0时,x=6,即A(6,0);(2)根据三角形面积公式即可求得;(1)根据三角形面积求得即可;(4)由折叠的性质,可求得AB′与OB′的长,BM=B′M,然后设MO=x,由在Rt△OMB′中,OM2+OB′2=B′M2,求出M的坐标,设直线AM的解析式为y=kx+b,再把A、M坐标代入就能求出解析式.【详解】解:(1)当x=0时,y=x+8=8,即B(0,8),当y=0时,x=6,即A(6,0);(2)∵点A的坐标为:(6,0),点B坐标为:(0,8),∠AOB=90°,∴OA=6,OB=8,∴,∴S△ABO=OA•OB=×6×8=24;(1)设点O到直线AB的距离为h,∵S△ABO=OA•OB=AB•h,∴×6×8=×10h,解得h=4.8,∴点O到直线AB的距离为4.8;(4)由折叠的性质,得:AB=AB′=10,∴OB′=AB′-OA=10-6=4,设MO=x,则MB=MB′=8-x,在Rt△OMB′中,OM2+OB′2=B′M2,即x2+42=(8-x)2,解得:x=1,∴M(0,1),设直线AM的解析式为y=kx+b,把(0,1);(6,0)代入可得,,解得,,所以,直线AM的解析式为y=-x+1.【点睛】此题考查了折叠的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征、勾股定理等知识,解答本题的关键是求出OM的长度.23、(1)B点坐标为(x,8-x);(2)D的坐标是(0,),E的坐标是(1,3).【分析】(1)根据长方形的特点得到OA+AB=8,故OA=x,AB=8-x,即可写出B点坐标;(2)根据A点坐标为(5,0),得到OA=5,OC=3,由勾股定理得:BE=4,设OD=x,则DE=OD=x,DC=3-x,Rt△CDE中,由勾股定理得到方程求出x即可求解.【详解】(1)长方形OABC周长=1,则OA+AB=8OA=x,AB=8-xB点坐标为(x,8-x)(2)∵矩形OABC的周长为1,∴2OA+2OC=1,∵A点坐标为(5,0),∴OA=5,∴OC=3,∵在Rt△ABE中,∠B=90°,AB=3,AE=OA=5,由勾股定理得:BE=4,∴CE=5-4=1,设OD=x,则DE=OD=x,DC=3-x,在Rt△CDE中,由勾股定理得:x2=12+(3-x)2,解得:x=即OD=∴D的坐标是(0,),E的坐标是(1,3).【点睛】此题主要考查矩形的折叠问题,解题的关键是熟知矩形的性质及勾股定理的应用.24、(1)1;(1).【分析】(1)由题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度福州地区二手房买卖法律文件
- 劳动合同法无固定期限劳动合同
- 2024年度教育信息化建设项目材料供应合同2篇
- 汽车指标租赁合同
- 交通事故和解协议书集合
- 物业委托管理合同范本
- 财务转正述职报告范文
- 补充报告范文
- 本科论文开题报告范文
- 《中学生学习方法》课件
- 二手车购买一批合同范本
- A10联盟2025届高三上学期11月段考 历史试卷 (含官方答案解析)
- 2024年巴西劳动市场变化与挑战
- 放射科专科护理模拟题含参考答案
- 家政培训讲师课件
- 2024年大型科学仪器共享与服务合作协议
- 2023秋部编版四年级语文上册第2单元大单元教学设计
- 2024年国家公务员考试《行测》真题卷(副省级)答案及解析
- 全年病案室报告
- 小区停车位施工方案
- 2025届四川省新高考八省适应性联考模拟演练政治试卷(含答案)
评论
0/150
提交评论