




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.化简的结果是()A. B. C. D.2.如图,已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,下列画法中错误的是()A. B.C. D.3.如图,是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知图案的面积为25,小正方形的面积为9,若用x,y长示小长方形的两边长(x>y)请观察图案,以下关系式中不正确的是()A.x2+y2=16 B.x-y=3 C.4xy+9=25 D.x+y=54.如图,在平行四边形中,平分,交于点,且,延长与的延长线交于点,连接,连接.下列结论中:①;②是等边角形:③;④;⑤.其中正确的是()A.②③⑤ B.①④⑤ C.①②③ D.①②④5.在直角坐标系中,△ABC的顶点A(﹣1,5),B(3,2),C(0,1),将△ABC平移得到△A'B'C',点A、B、C分别对应A'、B'、C',若点A'(1,4),则点C′的坐标()A.(﹣2,0) B.(﹣2,2) C.(2,0) D.(5,1)6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.97.人体一根头发的直径约为米,这个数字用科学记数法表示正确的是()A. B. C. D.8.如图,AC与BD交于O点,若,用“SAS”证明≌,还需A. B.C. D.9.下列计算正确的是()A.a3•a⁴=a12 B.(ab2)3=ab6 C.a10÷a2=a5 D.(﹣a4)2=a810.如图,将甲图中的阴影部分无重叠、无缝隙得拼成乙图,根据两个图形中阴影部面积关系得到的等式是()A.a2+b2=(a+b)(a-b) B.a2+2ab+b2=(a+b)2C.a2-2ab+b2=(a-b)2 D.(a+b)2-(a-b)2=4ab二、填空题(每小题3分,共24分)11.一个直角三角形的一条直角边长为12,斜边长13,则另一条直角边长度为__________.12.如图,在中,,,将其折叠,使点落在边上处,折痕为,则_______________.13.如果x2>0,那么x>0,这是一个_________命题14.若直角三角形斜边上的高和中线长分别是,,则它的面积是__________.15.在平面直角坐标系中,已知直线与x轴,y轴分别交于点A,B,线段AB绕点A顺时针方向旋转90°得线段AC,连接BC.(1)线段AB的长为_____;(2)若该平面内存在点P(a,1),使△ABP与△ABC的面积相等,则a的值为_____.16.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论,其中正确的结论是_____.①AE=CF,②AP=EF,③△EPF是等腰直角三角形,④四边形AEPF的面积是△ABC面积的一半.17.分解因式__________.18.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______人.三、解答题(共66分)19.(10分)在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.20.(6分)先化简,再求值:,其中且为整数.请你从中选取一个喜欢的数代入求值.21.(6分)为了了解居民的环保意识,社区工作人员在某小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖答卷活动(每名居民必须答卷且只答一份),并用得到的数据绘制了如图所示的条形统计图(得分为整数,满分为分,最低分为分)请根据图中信息,解答下列问题:(1)本次调查,一共抽取了多少名居民?(2)求本次调查获取的样本数据的平均数和众数;(3)社区决定对该小区名居民开展这项有奖答卷活动,得分者获一等奖,请你根据调查结果,帮社区工作人员估计需要准备多少份一等奖奖品?22.(8分)如图,AC=AE,∠C=∠E,∠1=∠1.求证:△ABC≌△ADE.23.(8分)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?24.(8分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据图示填写下表;班级
平均数(分)
中位数(分)
众数(分)
九(1)
85
85
九(2)
80
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.25.(10分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.26.(10分)解方程:
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据分式的除法法则,即可得到答案.【详解】原式====,故选D.【点睛】本题主要考查分式的除法法则,掌握分式的约分,是解题的关键.2、A【分析】根据经过直线外一点作已知直线的方法即可判断.【详解】解:已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,画法正确的是B、C、D选项,不符合题意.A选项错误,符合题意;故选:A.【点睛】本题考查了作图基本作图,解决本题的关键是掌握经过一点作已知直线的垂线的方法.3、A【分析】分析已知条件,逐一对选项进行判断即可.【详解】通过已知条件可知,大正方形的边长为5,小正方形的边长为3,通过图中可以看出,大正方形的边长可以用来表示,所以D选项正确,小正方形的边长可以用来表示,所以B选项正确。大正方形的面积可以用小正方形的面积加上四个小长方形的面积得到,所以C选项正确,故不正确的选项为A选项.【点睛】本题属于数形结合的题目,看懂题意,能够从图中获取有用的信息是解题的关键.4、D【分析】由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),得出,④正确;由△AEC与△DCE同底等高,得出,进而得出.⑤不正确.【详解】解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EAD=∠AEB,
又∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,
∵AB=AE,
∴△ABE是等边三角形,②正确;
∴∠ABE=∠EAD=60°,
∵AB=AE,BC=AD,
∴△ABC≌△EAD(SAS),①正确;
∵△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴,④正确;
又∵△AEC与△DEC同底等高,
∴,
∴,⑤不正确.
若AD与AF相等,即∠AFD=∠ADF=∠DEC,题中未限定这一条件,
∴③不一定正确;
故正确的为:①②④.故选:D.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定.此题比较复杂,注意将每个问题仔细分析.5、C【分析】根据点A的平移规律,求出点C′的坐标即可.【详解】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.【点睛】本题考查平移变换,坐标与图形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6、C【解析】多边形内角和定理.【分析】设这个多边形的边数为n,由n边形的内角和等于110°(n﹣2),即可得方程110(n﹣2)=1010,解此方程即可求得答案:n=1.故选C.7、D【分析】根据科学记数法的表示方法解答即可.【详解】解:用科学记数法表示为.故选:D.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8、B【分析】根据全等三角形的判定定理逐个判断即可.【详解】A、根据条件,,不能推出≌,故本选项错误;B、在和中,≌,故本选项正确;C、,,,符合全等三角形的判定定理ASA,不符合全等三角形的判定定理SAS,故本选项错误;D、根据和不能推出≌,故本选项错误;故选B.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9、D【分析】分别根据同底数幂的乘除法以及幂的乘方与积的乘方运算法则逐一判断即可.【详解】解:A.a3•a⁴=a7,故本选项不合题意;B.(ab2)3=a6b6,故本选项不合题意;C.a10÷a2=a8,故本选项不合题意;D.(﹣a4)2=a8,正确,故本选项符合题意.故选:D.【点睛】本题考查同底数幂的乘除计算,幂的乘方,积的乘方计算,关键在于熟练基础计算方法.10、C【分析】由图甲可知阴影部分的面积=大正方形的面积-两个长方形的面积+两个长方形重合部分的面积,由图乙可知阴影部分是边长为a-b的正方形,从而可知其面积为(a-b)2,从而得出结论.【详解】解:由图甲可知:阴影部分的面积=a2-2ab+b2由图乙可知:阴影部分的面积=(a-b)2∴a2-2ab+b2=(a-b)2故选C.【点睛】此题考查的是完全平方公式的几何意义,掌握阴影部分面积的两种求法是解决此题的关键.二、填空题(每小题3分,共24分)11、2【分析】根据勾股定理直接计算即可得出答案.【详解】一个直角三角形的一条直角边长为12,斜边长1.另一条直角边长度为:.故答案为:2.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理公式是解题的关键.12、【解析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠BA′D=∠DCA'+∠A'DC,又折叠前后图形的形状和大小不变,∠BA'D=∠A=65°,易求∠C=90°-∠A=25°,从而求出∠A′DC的度数.【详解】∵Rt△ABC中,∠ABC=90°,∠A=65°,∴∠C=90°-65°=25°,∵将其折叠,使点A落在边CB上A′处,折痕为BD,则∠BA'D=∠A,∵∠BA'D是△A'CD的外角,∴∠A′DC=∠BA'D-∠C=65°-25°=40°.故答案:40°.【点睛】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.13、假【分析】根据有理数的乘方法则即可得到答案.【详解】解:如果x2>0,那么x>0,是假命题,例如:(-2)2=4>0,-2<0;故答案为:假【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.14、48【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出斜边的长,然后根据三角形的面积公式计算即可.【详解】解:∵直角三角形斜边上的中线长是∴该直角三角形的斜边长为8×2=16cm∵直角三角形斜边上的高是6cm∴该直角三角形的面积为:×16×6=48cm2故答案为:48【点睛】此题考查的是直角三角形的性质和求三角形的面积,掌握直角三角形斜边上的中线等于斜边的一半和三角形的面积公式是解决此题的关键.15、5-4或【分析】(1)根据直线解析式可以求出A、B两点坐标,然后运用勾股定理即可求出AB的长度;(2)由(1)中AB的长度可求等腰直角△ABC的面积,进而可知△ABP的面积,由于没有明确点P的位置,要分类讨论利用三角形的和或差表示出面积,列出并解出方程即可得到答案.【详解】(1)∵直线与x轴,y轴分别交于点A、B,∴A(3,0),B(0,4),∴;(2)∵AB=5,∴,∴,当P在第二象限时,如图所示,连接OP,∵即,∴;当P在第一象限时,如图所示,连接OP,∵即,∴;故答案为:5;-4或.【点睛】本题考查了一次函数的综合应用,做题时要认真观察图形,要会对图象进行拼接来表示出三角形的面积,而分类讨论是正确解答本题的关键.16、①③④.【分析】根据等腰直角三角形的性质得:∠B=∠C=45°,AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴∠B=∠C=45°,AP⊥BC,AP=BC=PC=BP,∠BAP=∠CAP=45°,∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA),∴AE=CF;EP=PF,即△EPF是等腰直角三角形;故①③正确;S△AEP=S△CFP,∵四边形AEPF的面积=S△AEP+S△APF=S△CFP+S△APF=S△APC=S△ABC,∴四边形AEPF的面积是△ABC面积的一半,故④正确∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;故答案为:①③④.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键.17、【解析】试题解析:故答案为点睛:因式分解的常用方法:提公因式法,公式法,十字相乘法,分组分解法.18、35【解析】分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),则本次捐款20元的有:80−(20+10+15)=35(人),故答案为35.点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.三、解答题(共66分)19、(1)AD=BE.(2)成立,见解析;(3)∠APE=60°.【分析】(1)直接写出答案即可.(2)证明△ECB≌△ACD即可.(3)由(2)得到∠CEB=∠CAD,此为解题的关键性结论,借助内角和定理即可解决问题.【详解】解:(1)∵△ACE、△CBD均为等边三角形,∴AC=EC,CD=CB,∠ACE=∠BCD,∴∠ACD=∠ECB;在△ACD与△ECB中,,∴△ACD≌△ECB(SAS),∴AD=BE,故答案为AD=BE.(2)AD=BE成立.证明:∵△ACE和△BCD是等边三角形∴EC=AC,BC=DC,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD;在△ECB和△ACD中,,∴△ECB≌△ACD(SAS),∴BE=AD.(3))∠APE不随着∠ACB的大小发生变化,始终是60°.如图2,设BE与AC交于Q,由(2)可知△ECB≌△ACD,∴∠BEC=∠DAC又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.考点:全等三角形的判定与性质;等边三角形的性质.20、;当时,原式【分析】根据分式的加法和除法可以化简题目中的式子,然后从且为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:,∵且为整数,
∴当m=0时,原式【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、(1)50;(2)8.26分,8分;(3)100【分析】(1)根据总数=个体数量之和计算即可;(2)根据样本的平均数和众数的定义计算即可;(3)利用样本估计总体的思想解决问题即可;【详解】(1)(名),答:本次调查一共抽取了名居民;(2)平均数(分);众数:从统计图可以看出,得分的人最多,故众数为(分);(3)(份),答:估计大约需要准备份一等奖奖品.【点睛】本题考查了条形统计图综合运用,平均数与众数等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.注意:条形统计图能清楚地表示出每个项目的数据.22、证明见解析【解析】试题分析:由题目已知条件可得∠EAC+∠1=∠DAE、∠1+∠EAC=∠BAC、∠1=∠1,利用角的加减关系可得∠BAC=∠DAE;结合AC=AE、∠C=∠E,利用两角及其夹边对应相等的两个三角形全等即可解答本题.试题解析:∵∠1+∠EAC=∠BAC,∠EAC+∠1=∠DAE,∠1=∠1,∴∠BAC=∠DAE.∵∠BAC=∠DAE,AC=AE,∠C=∠E,∴△ABC≌△ADE.23、(1)去年每吨大蒜的平均价格是3500元;(2)应将120吨大蒜加工成蒜粉,最大利润为228000元.【分析】(1)设去年每吨大蒜的平均价格是x元,则第一次采购的平均价格为(x+500)元,第二次采购的平均价格为(x-500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润.【详解】(1)设去年每吨大蒜的平均价格是x元,由题意得,解得:x=3500,经检验:x=3500是原分式方程的解,且符合题意,答:去年每吨大蒜的平均价格是3500元;(2)由(1)得,今年的大蒜数为:×3=300(吨),设应将m吨大蒜加工成蒜粉,则应将(300-m)吨加工成蒜片,由题意得,解得:100≤m≤120,总利润为:1000m+600(300-m)=400m+180000,当m=120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.【点睛】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.24、(6)填表见解析.(6)九(6)班成绩好些;(6)70,6.【解析】试题分析:(6)分别计算九(6)班的平均分和众数填入表格即可.(6)根据两个班的平均分相等,可以从中位数的角度去分析这两个班级的成绩;(6)分别将两组数据代入题目提供的方差公式进行计算即可.试题解析:(6)(70+600+600+76+80)=86分,众数为600分中位数为:86分;班级
平均数(分)
中位数(分)
众数(分)
九(6)
86
86
86
九(6)
86
80
600
(6)九(6)班成绩好些,因为两个班级的平均数相同,九(6)班的中位数高,所以在平均数相同的情况下中位数高的九(6)班成绩好些;(6)S66=[(76-86)6+(80-86)6+6×(86-86)6+(600-86)6]=70,S66=[(70-86)6+(600-86)6+(600-86)6+(76-86)6+(80-86)6]=6.考点:6.方差;6.条形统计图;6.算术平均数;6.中位数;6.众数.25、(1)AB的解析式是y=-x+1.点B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;(3)当S△ABP=2时,n-1=2,解得n=2,则∠OBP=45°,然后分A、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解除商务楼合同协议书
- 货运合同解除协议
- 酒吧股份协议合同
- 拍卖招商代理合同协议
- 珠宝回购协议合同范本
- 茶楼租赁合同协议
- 协议存款合同2025
- 小情侣协议合同
- 土方安全协议合同
- 餐饮快餐合同协议
- 2024年防范电信网络诈骗知识题库及答案(共100题)
- 第47 届世界技能大赛商品展示技术项目技术文件
- (中级技能操作考核)消防设施操作员考试题库(全真题版)
- 南京工业大学《民法》2022-2023学年第一学期期末试卷
- DB11∕T 1796-2020 文物建筑三维信息采集技术规程
- 【工程法规】王欣 教材精讲班课件 38-第6章-6.3-施工单位安全生产责任制度
- 四年级数学下册 第1讲 平移、旋转和轴对称学生版(知识梳理+典例分析+举一反三+阶梯训练)(苏教版)
- 部编人教版二年级下学期语文期中综合复习强化练习题〔有答案〕
- 2024年高等教育法学类自考-00229证据法学考试近5年真题附答案
- 2024年高等教育工学类自考-06090人员素质测评理论与方法考试近5年真题附答案
- 统编版语文六年级下册10 古诗三首《石灰吟》公开课一等奖创新教学设计
评论
0/150
提交评论