版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程为A. B.C. D.2.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处 B.两处 C.三处 D.四处3.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或204.若△ABC三个角的大小满足条件∠A:∠B:∠C=1:1:3,则∠A=()A.30° B.36° C.45° D.60°5.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,6.56.如图,在中,,,垂直平分,交于点若,则等于()A. B. C. D.7.已知:,,,,……,若(a、b为正整数)符合前面式子的规律,则a+b的值是().A.109 B.218 C.326 D.4368.下列分解因式正确的是()A. B.C. D.9.如图,在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B,C为圆心,大于线段BC长度一半的长为半径画圆弧.两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED.一定正确的是()A.①②③ B.①② C.①③ D.②③10.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE11.下列计算正确的是()A.+= B.=4 C.3﹣=3 D.=12.若2m=a,32n=b,m,n均为正整数,则23m+10n的值为()A.ab B.ab C.a+b D.ab二、填空题(每题4分,共24分)13.两个最简二根式与相加得,则______.14.若的3倍与2的差是负数,则可列出不等式______.15.如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向160米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米.16.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为_____.17.已知点分别为四边形的边的中点,,且与不垂直,则四边形的形状是__________.18.要使代数式有意义,则x的取值范围是_______.三、解答题(共78分)19.(8分)已知,与成反比例,与成正比例,且当时,,.求关于的函数解析式.20.(8分)如图,在平行四边形ABCD中,BCD的平分线与BA的延长线相交于点E,求证:BE=BC.21.(8分)我市教育行政部门为了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)请你根据图中的信息,回答下列问题:(1)该校初二学生总人数为____________,扇形统计图中的的值为____________,扇形统计图中“活动时间为4天”的扇形所对圆心角度数为______________;(2)请把条形统计图补充完整.22.(10分)如图,在平面直角坐标系中点A的坐标为(4,-3),且0A=5,在x轴上确定一点P,使△AOP是以OA为腰的等腰三角形.(1)写出一个符合题意的点P的坐标;(2)请在图中画出所有符合条件的△AOP.23.(10分)某商家用1200元购进了一批T恤,上市后很快售完,商家又用2800元购进了第二批这种T恤,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批T恤是多少件?(2)若两批T恤按相同的标价销售,最后剩下20件按八折优惠卖出,如果希望两批T恤全部售完的利润率不低于16%(不考虑其它因素),那么每件T恤的标价至少是多少元?24.(10分)在平面直角坐标系中,一次函数yx+4的图象与x轴和y轴分别交于A、B两点.动点P从点A出发,在线段AO上以每秒1个单位长度的速度向点O作匀速运动,到达点O即停止运动.其中A、Q两点关于点P对称,以线段PQ为边向上作正方形PQMN.设运动时间为秒.如图①.(1)当t=2秒时,OQ的长度为;(2)设MN、PN分别与直线yx+4交于点C、D,求证:MC=NC;(3)在运动过程中,设正方形PQMN的对角线交于点E,MP与QD交于点F,如图2,求OF+EN的最小值.25.(12分)已知,.(1)若点的坐标为,请你画一个平面直角坐标系,标出点的位置;(2)求出的算术平方根.26.某射击队准备从甲、乙两名队员中选取一名队员代表该队参加比赛,特为甲、乙两名队员举行了一次选拔赛,要求这两名队员各射击10次.比赛结束后,根据比赛成绩情况,将甲、乙两名队员的比赛成绩制成了如下的统计表:甲队员成绩统计表成绩(环)18910次数(次)5122乙队员成绩统计表成绩(环)18910次数(次)4321(1)经过整理,得到的分析数据如表,求表中的,,的值.队员平均数中位数众数方差甲81.51乙11(2)根据甲、乙两名队员的成绩情况,该射击队准备选派乙参加比赛,请你写出一条射击队选派乙的理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量-12,由此可得到所求的方程.【详解】解:根据题意,得:故选:A.【点睛】此题考查分式方程的问题,关键是根据公式:包装箱的个数与文具的总个数÷每个包装箱装的文具个数是等量关系解答.2、D【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果.【详解】解:如图所示,可供选择的地址有4个,故选:D【点睛】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.3、C【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8-4<8<8+4,符合题意.故此三角形的周长=8+8+4=1.故选C【点睛】本题考查了等腰三角形的性质及三角形三边关系,分情况分析师解题的关键.4、B【分析】根据三角形内角和为180º进行计算即可.【详解】∵∠A:∠B:∠C=1:1:3且三角形内角和为180º,∴∠A=.故选:B.【点睛】考查了三角形的内角和定理,解题关键是熟记三角形内角和定理:三角形内角和为180º.5、C【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【详解】解:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7(环);因图中是按从小到大的顺序排列的,最中间的环数是7(环)、8(环),故中位数是7.5(环).
故选C.【点睛】本题考查众数和中位数的定义.解题关键是,当所给数据有单位时,所求得的众数和中位数与原数据的单位相同,不要漏单位.6、A【分析】根据垂直平分线的性质,得出AE=BE=6,再由三角形外角的性质得出∠AEC=∠ABE+∠BAE=30°,最后由含30°的直角三角形的性质得出AC的值即可.【详解】解:∵垂直平分,∴AE=BE=6,又∴∠ABE=∠BAE=15°,∴∠AEC=∠ABE+∠BAE=30°,又∵∴在RT△AEC中,故答案为:A.【点睛】本题考查了垂直平分线的性质、三角形的外角的性质、含30°的直角三角形的性质,熟知上述几何性质是解题的关键.7、A【分析】通过观察已知式子可得分子与第一个加数相同,分母等于分子的平方减1,即可求解.【详解】解:由,,,,……,可知分子与第一个加数相同,分母等于分子的平方减1,∴在中,b=10,a=102-1=99,∴a+b=109,故选:A.【点睛】本题考查数字的变化规律;能够通过所给例子,找到式子的规律是解题的关键.8、C【解析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.=(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9、B【分析】利用基本作图得到,则DE垂直平分BC,所以EB=EC,根据等腰三角形的性质得∠EBC=∠C,然后根据等角的余角相等得到∠A=∠EBA.【详解】由作法得,而D为BC的中点,所以DE垂直平分BC,则EB=EC,所以∠EBC=∠C,而,所以∠A=∠EBA,所以①②正确,故选:B.【点睛】本题主要考查了垂直平分线的性质及等腰三角形的性质,熟练掌握相关性质特点是解决本题的关键.10、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.11、D【解析】解:A.与不能合并,所以A错误;B.,所以B错误;C.,所以C错误;D.,所以D正确.故选D.12、A【分析】根据幂的乘方与积的乘方计算法则解答.【详解】解:∵,,
∴,
∴,
故选A.【点睛】本题考查了幂的乘方与与积的乘方,熟记计算法则即可解答.二、填空题(每题4分,共24分)13、1【分析】两个最简二次根式可以相加,说明它们是同类二次根式,根据合并的结果即可得出答案.【详解】由题意得,与是同类二次根式,∵与相加得,∴,,
则.
故答案为:1.【点睛】本题考查了二次根式的加减运算,判断出与是同类二次根式是解答本题的关键.14、【分析】根据题意即可列出不等式.【详解】根据题意得故答案为:.【点睛】此题主要考查列不等式,解题的关键是根据题意找到不等关系.15、1【解析】根据已知条件得到∠BAC=90°,AB=160米,AC=120米,由勾股定理即可得到结论.【详解】解:根据题意得:∠BAC=90°,AB=160米,AC=120米,
在Rt△ABC中,BC===1米.
故答案为:1.【点睛】本题考查解直角三角形的应用-方向角问题,会识别方向角是解题的关键.16、100°【分析】分别作点P关于OA、OB的对称点P、P,连P、P,交OA于M,交OB于N,△PMN的周长=PP,然后得到等腰△OP1P2中,∠OPP+∠OPP=100°,即可得出∠MPN=∠OPM+∠OPN=∠OPM+∠OPN=100°.【详解】分别作点P关于OA、OB的对称点P、P,连接PP,交OA于M,交OB于N,则OP=OP=OP,∠OPM=∠MPO,∠NPO=∠NPO,根据轴对称的性质,可得MP=PM,PN=PN,则△PMN的周长的最小值=PP,∴∠POP=2∠AOB=80°,∴等腰△OPP中,∠OPP+∠OPP=100°,∴∠MPN=∠OPM+∠OPN=∠OPM+∠OPN=100°,故答案为100°【点睛】此题考查轴对称-最短路线问题,解题关键在于作辅助线17、菱形【分析】根据三角形的中位线定理和菱形的判定,可得顺次连接对角线相等的四边形各边中点所得四边形是菱形.【详解】如图,∵E、F、G、H分别是线段AB、BC、CD、AD的中点,
∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,
根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,
又∵AC=BD,
∴EH=FG=EF=HG,
∴四边形EFGH是菱形.
故答案为:菱形.【点睛】此题考查三角形中位线定理和菱形的判定,解题关键在于掌握判定定理.18、x≥-1且x≠1【分析】先根据二次根式有意义,分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵使代数式有意义,∴解得x≥-1且x≠1.故答案为:x≥-1且x≠1.【点睛】本题考查的是代数式有意义的条件,熟知二次根式中的被开方数是非负数,分母不为零是解答此题的关键.三、解答题(共78分)19、【分析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1+y2,再把当x=2时,y1=4,y=2代入y关于x的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【详解】根据题意,设,.,,当时,,,,,,.【点睛】本题考查了正比例函数及反比例函数的定义及用待定系数法求函数的解析式的知识点,只要根据题意设出函数的关系式,把已知对应值代入即可.20、证明见解析.【分析】利用平行四边形的性质和角平分线的定义得出∠BCE=∠E,根据等角对等边即可得出结论.【详解】证明:∵四边形ABCD为平行四边形,∴BE∥CD,∴∠E=∠ECD,∵BCD的平分线与BA的延长线相交于点E,∴∠BCE=∠ECD,∴∠BCE=∠E,∴BE=BC.【点睛】本题考查等腰三角形的判定定理,平行四边形的性质.一半若要证明两条线段相等,而且这两条线段在同一三角形中,可用“等角对等边证明”.21、(1)200人,20,108°;(2)见解析【分析】(1)根据图中4天的人数和百分比算出初二的总人数,再根据6天的人数算出对应的百分比即可得a,根据4天所占百分比乘360°即可得对应圆心角度数.(2)分别根据3天和5天的百分比,乘上总人数,得到对应的人数,即可补全图形.【详解】解:(1)由图可知:4天的人数为60人,所占总人数的30%,则初二总人数为:60÷30%=200(人),∵6天对应的人数为40,∴6天对应百分比为:40÷200×100%=20%,即a=20,“活动时间为4天”对应的圆心角为:360°×30%=108°;(2)“3天”对应的人数为:200×15%=30(人),“5天”对应的人数为:200×25%=50(人),补全图形如下:【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)点P的坐标为或或,写出其中一个即可;(2)见解析【分析】(1)以点O为圆心,OA为半径画圆,与x轴的交点P1、P2即为所求;以点A为圆心,OA为半径画圆,与x轴的交点P3即为所求;(2)连接AP1、AP2、AP3、OP1、OP2、OP3即可.【详解】(1)如图,点P的坐标为或或.(2)如图所示,即为所求.【点睛】本题考查了尺规作图的问题,掌握等腰三角形的性质以及尺规作图的方法是解题的关键.23、(1)商家购进的第一批恤是1件;(2)每件恤的标价至少1元.【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了5元,列出方程求解即可;
(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【详解】(1)解:设购进的第一批恤是x件.由题意,得解得x=1.经检验,x=1是所列方程的解.所以商家购进的第一批恤是1件.(2)设每件的标价是y元由题意,(1+1×2-20)y+0.8×20y≥(1200+2800)(1+16%)解得y≥1.即每件恤的标价至少1元.【点睛】本题考查的知识点是分式方程的应用和一元一次不等式的应用,解题关键是弄清题意并找出题中的数量关系并列出方程.24、(1)2;(2)证明见解析;(3).【分析】(1)解方程得到OA=1,由t=2,于是得到结论;
(2)根据AP=PQ=t,得到OQ=1-2t,根据正方形的性质得到PQ=QM=MN=PN=t,求得M(1-2t,t),N(1-t,t),C(1-t,t),求得CM=(1-t)-(1-2t)=t,CN=(1-t)-(1-t)=t,于是得到结论;
(3)作矩形NEFK,则EN=FK,推出当O,F,K三点共线时,OF+EN=OF+FK的值最小,如图,作OH⊥QN于H,解直角三角形即可得到结论.【详解】(1)在yx+4中,令y=0,得x=1,∴OA=1.∵t=2,∴AP=PQ=2,∴OQ=1﹣2﹣2=2.故答案为:2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 02-第二单元达标检测
- 浙江省衢州市2023-2024学年高一下学期6月教学质量检测历史试卷2
- 营养风险筛查课件
- 安全教育教案中班40篇防火
- 5级写字楼装修合同范例
- 2024年教育培训合伙人协议
- 2024年拉萨客运员考试考什么内容的题目好
- 2024年安康客运上岗证模拟考试
- 2024年宁夏汽车客运资格证考试题目
- 2024年简单的离婚协议书有子女
- 广东省珠海市子期中学、梅华中学 2024-2025 学年上学期期中考试七年级数学试题(无答案)
- 2024年河南省信阳市招才引智绿色通道招聘市直事业单位人员183人高频难、易错点500题模拟试题附带答案详解
- 第20课清朝君主专制的强化 教案
- (新版)食品生产企业食品安全员理论考试题库500题(含答案)
- 2024-2030年中国应急产业市场发展分析及竞争形势与投资机会研究报告
- 2输变电工程施工质量验收统一表式(变电工程土建专业)-2024年版
- 2024年中国电动鼻毛器市场调查研究报告
- 2025年高考语文复习备考复习策略讲座
- 2024年中国具身智能行业研究:知行合一拥抱AI新范式-19正式版
- 数字中国发展报告(2023年)
- DB33936-2022公路桥梁整体顶升技术规程
评论
0/150
提交评论