




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学中考复习教案七篇数学中考复习教案七篇数学中考复习教案【篇1】教学目标:1、了解公式的意义,使学生能用公式解决简单的实际问题;2、初步培养学生观察、分析及概括的能力;3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。教学建议:一、教学重点、难点重点:通过具体例子了解公式、应用公式。难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。二、重点、难点分析人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。三、知识结构本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。四、教法建议1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。教学设计示例:一、教学目标(一)知识教学点1、使学生能利用公式解决简单的实际问题。2、使学生理解公式与代数式的关系。(二)能力训练点1、利用数学公式解决实际问题的能力。2、利用已知的公式推导新公式的能力。(三)德育渗透点数学来源于生产实践,又反过来服务于生产实践。(四)美育渗透点数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。二、学法引导1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。2、学生学法:观察→分析→推导→计算。三、重点、难点、疑点及解决办法1、重点:利用旧公式推导出新的图形的计算公式。2、难点:同重点。3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差。四、课时安排1课时五、教具学具准备投影仪,自制胶片。六、师生互动活动设计教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。七、教学步骤(一)创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏。在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题。板书:公式师:小学里学过哪些面积公式?板书:S=ah(出示投影1)。解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。数学中考复习教案【篇2】一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。二、学习者分析:1、在学习本课之前应具备的基本知识和技能:①同类项的定义。②合并同类项法则③多项式乘以多项式法则。2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。三、教学/学习目标及其对应的课程标准:(一)教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。2、会推导完全平方公式,并能运用公式进行简单的计算。(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。四、教育理念和教学方式:1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。3、教学评价方式:(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。五、课后反思本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备数学中考复习教案【篇3】教材分析:一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。学情分析:1.学生已学习用求根公式法解一元二次方程。2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。教学目标:1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。教学重难点:1、重点:一元二次方程根与系数的关系。2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。板书设计:一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。学生学习活动评价设计:本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。教学反思:1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。数学中考复习教案【篇4】一、教材内容人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2.二、教学目标1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。三、教学重、难点认识负数的意义。四、教学过程(一)谈话交流谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?(二)教学新知1.表示相反意义的量(1)引入实例谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。①六年级上学期转来6人,本学期转走6人。②张阿姨做生意,二月份盈利1500元,三月份亏损200元。③与标准体重比,小明重了2.5千克,小华轻了1.8千克。④一个蓄水池夏季水位上升米,冬季水位下降米。指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)(2)尝试怎样用数学方式来表示这些相反意义的量呢?请同学们选择一例,试着写出表示方法。(3)展示交流2.认识正、负数(1)引入正、负数谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。(2)试一试请你用正、负数来表示出其它几组相反意义的量。写完后,交流、检查。3.联系实际,加深认识(1)说一说存折上的数各表示什么?(教学例2.)(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。①同桌交流。②全班交流。根据学生发言板书。这样的正、负数能写完吗?(板书:……)强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。4.进一步认识“0”(1)看一看、读一读谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。哈尔滨:-18℃~-5℃北京:-6℃~6℃深圳:15℃~25℃温度中有正数也有负数,请把负数读出来。(2)找一找、说一说我们来看首都北京当天的温度,“-5℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5℃又表示什么?你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)说一说,你怎么这么快就找到了?(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)你能很快找到12℃、-3℃吗?(3)提升认识请学生观察温度计,说一说有什么发现?在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)“0”是正数,还是负数呢?(4)总结归纳如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:5.练一练读一读,填一填。6.出示课题同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。数学中考复习教案【篇5】一、教学目标知识与技能:使学生了解正数与负数是从实际需要中产生的;过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力二、教学重点和难点负数的引入和意义三、教学过程创设情景,生活实例引入,观察猜想,合作探究(一)、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。为了表示一个人、两只手、……,我们用到整数1,2,……为了表示半小时、四元八角七分、……,我们需用到分数1/2和小数4.87、……为了表示“没有人”、“没有羊”、……我们要用到0。但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。(二)、师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。现实生活中,像这样的相反意义的量还有很多。例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。又如,某仓库昨天运进货物吨,今天运出货物吨,“运进”和“运出”,其意义是相反的。同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的量筒明地表示出来了。让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作—155米;运进纲物吨,记作+;运出货物吨,记作—。教师讲解:什么叫做正数?什么叫做负数。强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“—”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号(三)、运用举例变式练习例1所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:—11,4,8,+73,—2,7,,—8,12,—;正数集合负数集合此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分。然后,指出不仅可以用圈表示集合,也可以用大括号表示集合课堂练习任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{…},负数集合:{…}四、课堂小结由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上“—”号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃五、作业布置1、北京一月份的日平均气温大约是零下3℃,用负数表示这个温度2、在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着—392,这表明死海的湖面与海平面相比的高度是怎样的?3、在下列各数中,哪些是正数?哪些是负数?—16,0,004,+,—,25,8,—3,6,—4,9651,—0,1.4、如果—50元表示支出50元,那么+200元表示什么?5、河道中的水位比正常水位低0。2米记作—0.2米,那么比正常水位温0.1米记作什?6、如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?7、一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?数学中考复习教案【篇6】教学目的1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。2、使学生能了解实数绝对值的意义。3、使学生能了解数轴上的点具有一一对应关系。4、由实数的分类,渗透数学分类的思想。5、由实数与数轴的一一对应,渗透数形结合的思想。教学分析重点:无理数及实数的概念。难点:有理数与无理数的区别,点与数的一一对应。教学过程一、复习1、什么叫有理数?2、有理数可以如何分类?(按定义分与按大小分。)二、新授1、无理数定义:无限不循环小数叫做无理数。判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。2、实数的定义:有理数与无理数统称为实数。3、按课本中列表,将各数间的联系介绍一下。除了按定义还能按大小写出列表。4、实数的相反数:5、实数的绝对值:6、实数的运算讲解例1,加上(3)若|x|=π(4)若|x-1|=,那么x的值是多少?例2,判断题:(1)任何实数的偶次幂是正实数。()(2)在实数范围内,若|x|=|y|则x=y。()(3)0是最小的实数。()(4)0是绝对值最小的实数。()解:略三、练习P148练习:3、4、5、6.四、小结1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。五、作业1、P150习题A:3.2、基础训练:同步练习1.数学中考复习教案【篇7】知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。2.通过一元一次方程的学习,体会方程模型思想和化归思想。解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。教学难点分析实际问题中的相等关系,列出方程。教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。出示问题(幻灯片)。学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。1.找出问题中的已知数和已知条件。(独立回答)2.设未知数:设这个班有x名学生。3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)4.找相等关系:这批书的总数是一个定值,表示它的两个等式相等.(学生回答,教师追问)5.列方程:3x+20=4x-25(1)总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?教师提问1:这个方程与我们前面解过的方程有什么不同?学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).教师提问2:怎样才能使它向x=a的形式转化呢?学生思考、探索:为使方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025投资协议书范本(合同版本)
- 2025 年租赁合同范本:商铺、店面租赁协议
- 2025企业流动资金借款合同
- 2025供货合同示范文本
- 光伏建筑合作协议
- 新兴农业技术应用于传统农业的转型发展研究
- 酒店宴会委托协议书范本
- 常用钢材购销合同范本
- 智能装备机电集成技术知到课后答案智慧树章节测试答案2025年春深圳职业技术大学
- 中国传统绘画赏析知到课后答案智慧树章节测试答案2025年春厦门理工学院
- 2025年中考英语时文阅读:6篇有关电影哪吒2的英语阅读及相关题目(无答案)
- 中央厨房基地建议书可行性研究报告备案
- 2024年太原城市职业技术学院高职单招数学历年参考题库含答案解析
- 戏剧课程设计方案
- 物料提升机安全技术操作规程(4篇)
- 图书室管理领导小组及职责
- 【MOOC】智慧的秘密-重庆大学 中国大学慕课MOOC答案
- 【MOOC】金融工程-厦门大学 中国大学慕课MOOC答案
- 《人力资源管理》大学期末测试题库500题(含答案)
- CQI-9 第四版 热处理系统审核表中文完整版-
- 2024-2025学年七年级语文上册专项复习:词语理解(原卷版+答案)
评论
0/150
提交评论