版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,将矩形纸片ABCD折叠,AE、EF为折痕,点C落在AD边上的G处,并且点B落在EG边的H处,若AB=3,∠BAE=30°,则BC边的长为()A.3 B.4 C.5 D.62.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个 B.2个 C.3个 D.4个3.某厂计划x天生产120个零件,由于改进技术,每天比计划多生产3个,因此比原计划提前2天完成,列出的正确方程为()A. B. C. D.4.如图,小明书上的三角形被墨迹遮挡了一部分,测得两个角的度数为32°、74°,于是他很快判断这个三角形是()A.等边三角形 B.等腰三角形 C.直角三角形 D.钝角三角形5.不等式组的最小整数解是()A.0 B.-1 C.1 D.26.三角形的五心在平面几何中占有非常重要的地位,这五心分别是:重心、外心、内心、垂心、旁心,其中三角形的重心是三角形的()A.三条角平分线的交点B.三条中线的交点C.三条高所在直线的交点D.三边垂直平分线的交点7.已知,则的值为()A.7 B.C. D.8.在,分式的个数有(
)A.3个 B.4个 C.5个 D.6个9.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,要比10个人插秧提前3天完成,一台插秧机的工作效率是一个人工作效率的()倍.A. B. C. D.10.把分式约分得()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平行四边形ABCD中,∠C=120°,AD=4,AB=2,点H、G分别是边CD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF则EF的最大值与最小值的差为__________.12.如图,中,,的周长是11,于,于,且点是的中点,则_______.13.在平面直角坐标系中,若点到原点的距离是,则的值是________.14.若直线与直线的交点在轴上,则_______.15.如图,点B,A,D,E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF则需要添加一个适当的条件是______16.如图,点分别在线段上,与相交于点,已知,若要判断则需添加条件__________.(只要求写出一个)17.若x2+bx+c=(x+5)(x-3),其中b,c为常数,则点P(b,c)关于y轴对称的点的坐标是________.18.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.三、解答题(共66分)19.(10分)按要求计算:(1)计算:(2)因式分解:①②(3)解方程:20.(6分)现有一长方形纸片ABCD,如图所示,将△ADE沿AE折叠,使点D恰好落在BC边上的点F,已知AB=6,BC=10,求EC的长.21.(6分)如图,直线交轴于点,直线交轴于点,并且这两条直线相交于轴上一点,平分交轴于点.(1)求的面积.(2)判断的形状,并说明理由.(3)点是直线上一点,是直角三角形,求点的坐标.22.(8分)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.23.(8分)某农场急需氨肥8t,在该农场南北方向分别有A,B两家化肥公司,A公司有氨肥3t,每吨售价750元;B公司有氨肥7t,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输质量a(单位:t)的关系如图所示.(1)根据图象求出b关于a的函数表达式(写出自变量的取值范围).(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m(km),设农场从A公司购买x(t)氨肥,购买8t氨肥的总费用为y元(总费用=购买铵肥的费用+运输费用),求出y关于x的函数表达式(m为常数),并向农场建议总费用最低的购买方案.24.(8分)如图,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC与CD的长度之和为34cm,其中C是直线l上的一个动点,请你探究当C离点B有多远时,△ACD是以DC为斜边的直角三角形.25.(10分)因式分解:(1)﹣2x2﹣8y2+8xy;(2)(p+q)2﹣(p﹣q)226.(10分)如图,、两个村子在笔直河岸的同侧,、两村到河岸的距离分别为,,,现在要在河岸上建一水厂向、两村输送自来水,要求、两村到水厂的距离相等.(1)在图中作出水厂的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂距离处多远?
参考答案一、选择题(每小题3分,共30分)1、A【解析】利用三角函数求出直角三角形各边长度,再证明△AEC1和△CC1E是等边三角形,即可求出BC长度。【详解】解:连接CC1,如下图所示∵在Rt△ABE中,∠BAE=30,AB=3∴BE=AB×tan30°=1,AE=2,∴∠AEB1=∠AEB=60°由AD∥BC,得∠C1AE=∠AEB=60°∴△AEC1为等边三角形,∴△CC1E也为等边三角形,∴EC=EC1=AE=2∴BC=BE+EC=3所以A选项是正确的【点睛】本题考查直角三角形中的边角关系,属于简单题,关键会用直角三角函数求解直角边长。2、D【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.3、D【分析】根据计划x天生产120个零件,由于改进技术,每天比计划多生产3个,因此比原计划提前2天完成,可列出方程.【详解】解:设计划x天生产120个零件,.故选D.【点睛】本题考查由实际问题抽象出分式方程,关键设出天数,以件数作为等量关系列方程.4、B【分析】根据三角形的内角和是180°,求得第三个内角的度数,然后根据角的度数判断三角形的形状.【详解】第三个角的度数=180°-32°-74°=74°,所以,该三角形是等腰三角形.故选B.【点睛】此题考查了三角形的内角和公式以及三角形的分类.5、A【解析】解:解不等式组可得,在这个范围内的最小整数为0,所以不等式组的最小整数解是0,故选A6、B【分析】根据三角形重心的概念解答即可.【详解】三角形的重心为三角形三条中线的交点故选B【点睛】本题主要考查了三角形重心的概念,掌握三角形重心的概念是解题的关键.7、C【分析】根据得到,代入计算即可.【详解】∵,∴,∴,故选:C.【点睛】此题考查分式的化简求值,利用已知条件求出是解题的关键.8、B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:,分式的有:共有4个.故选:B【点睛】此题主要考查了分式概念,关键是掌握分式的分母必须含有字母.9、C【分析】本题可利用工作总量作为相等关系,借助方程解题.【详解】解:设一台插秧机的工作效率为x,一个人工作效率为y.则10my=(m﹣3)x.∴.故选:C.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系,工程问题要有“工作效率”,“工作时间”,“工作总量”三个要素,数量关系为:工作效率×工作时间=工作总量.10、D【分析】首先提取分母的公因式,然后约去分子分母的公因式即可【详解】,故答案选D【点睛】此题主要考察了分式的约分,关键是正确确定分子分母的公因式二、填空题(每小题3分,共24分)11、【分析】取AD的中点M,连接CM、AG、AC,作AN⊥BC于N;再证明∠ACD=90°,求出AC=2、AN=;然后由三角形中位线定理,可得EF=AG,最后求出AG的最大值和最小值即可.【详解】解:如图:取AD的中点M,连接CM、AG、AC,作AN⊥BC于N∵四边形ABCD是平行四边形,∠BCD=120°∴∠D=180°-∠BCD=60°,AB=CD=2∴AM=DM=DC=2∴△CDM是等边三角形∴∠DMC=∠MCD=60°,AM=MC∴∠MAC=∠MCA=30°∴∠ACD=90°∴AC=2在Rt△ACN中,AC=2,∠ACN=∠DAC=30°∴AN=AC=∵AE=EH,GF=FH∴EF=AG∴AG的最大值为AC的长,最小值为AN的长∵AG的最大值为2,最小值为∴EF的最大值为,最小值为∴EF的最大值与最小值的差为-=.故答案为.【点睛】本题考查平行四边形的性质、三角形的中位线定理、等边三角形的判定和性质、直角三角形30度角性质、垂线段最短等知识,正确添加辅助线和证得∠ACD=90是解答本题的关键.12、【分析】根据直角三角形斜边上的中线等于斜边的一半可得,,通过计算可求得AB,再利用勾股定理即可求得答案.【详解】∵AF⊥BC,BE⊥AC,D是AB的中点,
∴,∵AB=AC,AF⊥BC,
∴点F是BC的中点,∴,
∵BE⊥AC,
∴,∴的周长,
∴,在中,即,解得:.故答案为:.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质以及勾股定理,熟记各性质是解题的关键.13、3或-3【分析】根据点到原点的距离是,可列出方程,从而可以求得x的值.【详解】解:∵点到原点的距离是,∴,解得:x=3或-3,故答案为:3或-3.【点睛】本题考查了坐标系中两点之间的距离,解题的关键是利用勾股定理列出方程求解.14、1【分析】先求出直线与y轴的交点坐标为(0,1),然后根据两直线相交的问题,把(0,1)代入即可求出m的值.【详解】解:当x=0时,=1,则直线与y轴的交点坐标为(0,1),把(0,1)代入得m=1,故答案为:1.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.15、答案不唯一,如:BC=EF或∠BAC=∠EDF.【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC=∠EDF,根据条件利用ASA即可得证.【详解】若添加BC=EF.∵BC∥EF,∴∠B=∠E.∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED.在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF.∵BC∥EF,∴∠B=∠E.∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED.在△ABC和△DEF中,∵,∴△ABC≌△DEF(ASA).故答案为答案不唯一,如:BC=EF或∠BAC=∠EDF.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解答本题的关键.16、答案不唯一,如【分析】添加条件:AD=AE,再由已知条件AB=AC和公共角∠A可利用SAS定理证明△ABE≌△ACD.【详解】解:添加条件:AD=AE,
在△ADC和△AEB中,,∴△ABE≌△ACD(SAS),
故答案为:AD=AE.(不唯一)【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.17、(-2,-15)【解析】分析:先利用多项式的乘法展开再根据对应项系数相等确定出b、c的值,然后根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.详解:∵(x+5)(x−3)=x2+2x−15,∴b=2,c=−15,∴点P的坐标为(2,−15),∴点P(2,−15)关于y轴对称点的坐标是(−2,−15).故答案为(−2,−15).点睛::考查关于y轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数.18、.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果:【详解】∵甲每分钟行驶12÷30=(千米),乙每分钟行驶12÷12=1(千米),∴每分钟乙比甲多行驶1-(千米)则每分钟乙比甲多行驶千米故答案为三、解答题(共66分)19、(1)1;(2)①(2a+5b)(2a﹣5b);②﹣3xy2(x﹣y)2;(3)【分析】(1)根据二次根式的乘法公式、绝对值的性质、零指数幂的性质和负指数幂的性质计算即可;(2)①利用平方差公式因式分解即可;②先提取公因式,然后利用完全平方公式因式分解即可;(3)根据解分式方程的一般步骤解分式方程即可.【详解】(1)解:=1.(2)①原式=(2a+5b)(2a﹣5b);②原式=﹣3xy2(x2﹣2xy+y2)=﹣3xy2(x﹣y)2.(3)解:去分母得,x﹣1+2(x﹣2)=﹣3,3x﹣5=﹣3,解得,检验:把代入x﹣2≠0,所以是原方程的解.【点睛】此题考查的是实数的混合运算、因式分解和解分式方程,掌握二次根式的乘法公式、绝对值的性质、零指数幂的性质、负指数幂的性质、利用提公因式法、公式法因式分解和解分式方程是解决此题的关键.20、【分析】由勾股定理求出BF=8,得出FC=2,设DE=EF=x,则EC=6﹣x,在Rt△CEF中,EF2=FC2+EC2,即x2=22+(6﹣x)2,解得x=,即可得出答案.【详解】解:∵四边形ABCD是矩形,∴CD=AB=6,AD=BC=10,∠B=∠C=90°,又∵将△ADE折叠使点D恰好落在BC边上的点F,∴AF=AD=10,DE=EF,在Rt△ABF中,AB=6,AF=10,∴BF=,∴FC=10﹣8=2,设DE=EF=x,则EC=6﹣x,在Rt△CEF中,EF2=FC2+EC2,即x2=22+(6﹣x)2,解得,∴EC=6﹣x=,即EC的长为.【点睛】本题考查了折叠的性质、矩形的性质和勾股定理,利用折叠的性质和矩形的性质得出线段长及未知线段的数量关系,再由勾股定理得出方程是解题的关键.21、(1)5;(2)直角三角形,理由见解析;(3)或【分析】(1)先求出直线与x轴的交点B的坐标和与y轴的交点C的坐标,把点C代入直线,求出m的值,再求它与x轴的交点A的坐标,的面积用AB乘OC除以2得到;(2)用勾股定理求出BC的平方,AC的平方,再根据AB的平方,用勾股定理的逆定理证明是直角三角形;(3)先根据角平分线求出D的坐标,再去分两种情况构造全等三角形,利用全等三角形的性质求出对应的边长,从而得到点E的坐标.【详解】解:(1)令,则,∴,令,则,解得,∴,将代入,得,∴,令,则,解得,∴,∴,,∴;(2)根据勾股定理,,,且,∴,则是直角三角形;(3)∵CD平分,∴,∴,∴,∴①如图,是直角,过点E作轴于点N,过点C作于点M,由(2)知,,∵CD平分,∴,∴是等腰直角三角形,∴,∵,,∴,在和中,,∴,设,,根据图象列式:,即,解得,∴,∴;②如图,是直角,过点E作轴于点G,同理是等腰直角三角形,且可以证得,∴,,∴,∴,综上:,.【点睛】本题考查一次函数综合,解题的关键是掌握一次函数解析式的求解,与坐标轴交点的求解,图象围成的三角形面积的求解,还涉及勾股定理、角平分线的性质、全等三角形等几何知识,需要运用数形结合的思想去求解.22、(1)证明见解析;(2)证明见解析.【分析】(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;(2)由全等三角形的性质得AF=BC,由等腰三角形的性质“三线合一”得BC=2CD,等量代换得出结论.【详解】(1)证明:由于AB=AC,故△ABC为等腰三角形,∠ABC=∠ACB;∵AD⊥BC,CE⊥AB,∴∠AEC=∠BEC=90°,∠ADB=90°;∴∠BAD+∠ABC=90°,∠ECB+∠ABC=90°,∴∠BAD=∠ECB,在Rt△AEF和Rt△CEB中∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA)(2)∵△ABC为等腰三角形,AD⊥BC,故BD=CD,即CB=2CD,又∵△AEF≌△CEB,∴AF=CB=2CD.23、(1)b=;(2)当m>时,到A公司买3t,到B公司买5t费用最低;当m=时,到A公司或B公司买费用一样;当m<时,到A公司买1t,到B公司买7t,费用最低.【解析】试题分析:(1)利用待定系数法分别求出当0≤a≤4和当a>4时,b关于a的函数解析式;(2)由于1≤x≤3,则到A公司的运输费用满足b=3a,到B公司的运输费用满足b=5a﹣8,利用总费用=购买铵肥费用+运输费用得到y=750x+3mx+(8﹣x)×700+[5(8﹣x)﹣8]•2m,然后进行整理,再利用一次函数的性质确定费用最低的购买方案.试题解析:(1)当0≤a≤4时,设b=ka,把(4,12)代入得4k=12,解得k=3,所以b=3a;当a>4,设,把(4,12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省衡水市2024-2025学年高三上学期10月学科素养检测物理(无答案)
- 2024年代理推广合作合同范本
- 广东省珠海市六校联考2024-2025学年高二上学期11月期中考试生物试卷(含解析)
- 别墅基础知识培训
- 变频器技术培训
- 临床围手术期
- 会计知识点培训
- 2024山东省物业服务合同范本
- 2024《手房买卖合同范本》
- 2024至2030年中国超涂层环带行业投资前景及策略咨询研究报告
- 瓶装水项目市场营销方案
- 狮子王-中英文-剧本台词(全)
- 【幼儿园语言文字教学的规范化分析3000字(论文)】
- 瓶口分液器校准规范
- 硅pu塑胶施工方案
- 学校学生会学生干部工作素质提升培训教学课件
- 2023年辽阳市宏伟区事业单位考试真题
- 环境工程专业英语 课件
- 四川美丰梅塞尔气体产品有限公司5000吨-年干冰技术改造项目环境影响报告
- 教学工作中存在问题及整改措施
- 2013部编版九年级物理全一册《测量小灯泡的电功率》评课稿
评论
0/150
提交评论