版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布,则,.)A.4.56% B.13.59% C.27.18% D.31.74%2.已知集合,,若,则()A.或 B.或 C.或 D.或3.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为()A. B. C. D.4.已知是虚数单位,若,则()A. B.2 C. D.35.已知实数x,y满足,则的最小值等于()A. B. C. D.6.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是()A.8 B.9 C.10 D.117.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为()A.-1 B.1 C. D.8.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是()A. B.C. D.9.已知为虚数单位,复数满足,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A. B.C. D.11.已知数列对任意的有成立,若,则等于()A. B. C. D.12.双曲线x26-y23=1的渐近线与圆(x-3)2+y2=A.3 B.2C.3 D.6二、填空题:本题共4小题,每小题5分,共20分。13.若变量,满足约束条件则的最大值是______.14.某高校开展安全教育活动,安排6名老师到4个班进行讲解,要求1班和2班各安排一名老师,其余两个班各安排两名老师,其中刘老师和王老师不在一起,则不同的安排方案有________种.15.已知实数满足则点构成的区域的面积为____,的最大值为_________16.已知数列的前项和为,,且满足,则数列的前10项的和为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:,不与坐标轴垂直的直线与椭圆交于,两点.(Ⅰ)若线段的中点坐标为,求直线的方程;(Ⅱ)若直线过点,点满足(,分别为直线,的斜率),求的值.18.(12分)求函数的最大值.19.(12分)在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.(1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?附:0.0500.0100.0013.8416.63510.82820.(12分)如图,三棱锥中,,,,,.(1)求证:;(2)求直线与平面所成角的正弦值.21.(12分)△的内角的对边分别为,且.(1)求角的大小(2)若,△的面积,求△的周长.22.(10分)如图:在中,,,.(1)求角;(2)设为的中点,求中线的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:由题意故选B.考点:正态分布2、B【解析】
因为,所以,所以或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上或,选B.3、A【解析】由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.4、A【解析】
直接将两边同时乘以求出复数,再求其模即可.【详解】解:将两边同时乘以,得故选:A【点睛】考查复数的运算及其模的求法,是基础题.5、D【解析】
设,,去绝对值,根据余弦函数的性质即可求出.【详解】因为实数,满足,设,,,恒成立,,故则的最小值等于.故选:.【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.6、B【解析】
根据题意计算,,,解不等式得到答案.【详解】∵是以1为首项,2为公差的等差数列,∴.∵是以1为首项,2为公比的等比数列,∴.∴.∵,∴,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.7、D【解析】
根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.【详解】如图所示:因为是△的中位线,所以到的距离等于△的边上高的一半,所以,由此可得,当且仅当时,即为的中点时,等号成立,所以,由平行四边形法则可得,,将以上两式相加可得,所以,又已知,根据平面向量基本定理可得,从而.故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.8、D【解析】
根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可.【详解】由条件可得函数关于直线对称;在,上单调递增,且在时使得;又,,所以选项成立;,比离对称轴远,可得,选项成立;,,可知比离对称轴远,选项成立;,符号不定,,无法比较大小,不一定成立.故选:.【点睛】本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.9、B【解析】
求出复数,得出其对应点的坐标,确定所在象限.【详解】由题意,对应点坐标为,在第二象限.故选:B.【点睛】本题考查复数的几何意义,考查复数的除法运算,属于基础题.10、B【解析】
选B.考点:圆心坐标11、B【解析】
观察已知条件,对进行化简,运用累加法和裂项法求出结果.【详解】已知,则,所以有,,,,两边同时相加得,又因为,所以.故选:【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.12、A【解析】
由圆心到渐近线的距离等于半径列方程求解即可.【详解】双曲线的渐近线方程为y=±22x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=±答案:A【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】
做出满足条件的可行域,根据图形,即可求出的最大值.【详解】做出不等式组表示的可行域,如图阴影部分所示,目标函数过点时取得最大值,联立,解得,即,所以最大值为9.故答案为:9.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.14、156【解析】
先考虑每班安排的老师人数,然后计算出对应的方案数,再考虑刘老师和王老师在同一班级的方案数,两者作差即可得到不同安排的方案数.【详解】安排6名老师到4个班则每班老师人数为1,1,2,2,共有种,刘老师和王老师分配到一个班,共有种,所以种.故答案为:.【点睛】本题考查排列组合的综合应用,难度一般.对于分组的问题,首先确定每组的数量,对于其中特殊元素,可通过“正难则反”的思想进行分析.15、811【解析】
画出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.【详解】不等式组表示的平面区域如下图所示:数形结合可知,可行域为三角形,且底边长,高为,故区域面积;令,变为,显然直线过时,z最大,故.故答案为:;11.【点睛】本题考查简单线性规划问题,涉及区域面积的求解,属基础题.16、1【解析】
由得时,,两式作差,可求得数列的通项公式,进一步求出数列的和.【详解】解:数列的前项和为,,且满足,①当时,,②①-②得:,整理得:(常数),故数列是以为首项,2为公比的等比数列,所以(首项不符合通项),故,所以:,故答案为:1.【点睛】本题主要考查数列的通项公式的求法及应用,数列的前项和的公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根据点差法,即可求得直线的斜率,则方程即可求得;(Ⅱ)设出直线方程,联立椭圆方程,利用韦达定理,根据,即可求得参数的值.【详解】(1)设,,则两式相减,可得.(*)因为线段的中点坐标为,所以,.代入(*)式,得.所以直线的斜率.所以直线的方程为,即.(Ⅱ)设直线:(),联立整理得.所以,解得.所以,.所以,所以.所以.因为,所以.【点睛】本题考查中点弦问题的点差法求解,以及利用代数与几何关系求直线方程,涉及韦达定理的应用,属中档题.18、【解析】
试题分析:由柯西不等式得试题解析:因为,所以.等号当且仅当,即时成立.所以的最大值为.考点:柯西不等式求最值19、(1)列联表见解析,99%;(2),;(3)第二种优惠方案更划算.【解析】
(1)根据已知数据得出列联表,再根据独立性检验得出结论;(2)有数据可知,女性中“手机支付族”的概率为,知服从二项分布,即,可求得其期望和方差;(3)若选方案一,则需付款元,若选方案二,设实际付款元,,则的取值为1200,1080,1020,求出实际付款的期望,再比较两个方案中的付款的金额的大小,可得出选择的方案.【详解】(1)由已知得出联列表:,所以,有99%的把握认为“手机支付族”与“性别”有关;(2)有数据可知,女性中“手机支付族”的概率为,,;(3)若选方案一,则需付款元若选方案二,设实际付款元,,则的取值为1200,1080,1020,,,,选择第二种优惠方案更划算【点睛】本题考查独立性检验,二项分布的期望和方差,以及由期望值确定决策方案,属于中档题.20、(1)证明见详解;(2)【解析】
(1)取中点,根据,利用线面垂直的判定定理,可得平面,最后可得结果.(2)利用建系,假设长度,可得,以及平面的一个法向量,然后利用向量的夹角公式,可得结果.【详解】(1)取中点,连接,如图由,所以由,平面所以平面,又平面所以(2)假设,由,,.所以则,所以又,平面所以平面,所以,又,故建立空间直角坐标系,如图设平面的一个法向量为则令,所以则直线与平面所成角的正弦值为【点睛】本题考查线面垂直、线线垂直的应用,还考查线面角,学会使用建系的方法来解决立体几何问题,将几何问题代数化,化繁为简,属中档题.21、(I);(II).【解析】
试题分析:(I)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程数学(线性代数)
- 胫腓骨骨折护理查房课件
- 消防安全教育教案13749
- 婚庆策划居间合作协议范本
- 道 法走近老师+课件-2024-2025学年统编版道德与法治七年级上册
- 2024年哈尔滨客运资格证考试科目
- 2024年工厂员工手册范本
- 2024年拉萨客运从业资格考试题库
- 2024年厂房租赁合同范例
- 缤纷舞曲-《夏夜圆舞曲》教学课件 -2024-2025学年人音版(简谱)(2024)七年级音乐上册
- 2024年高校教师资格证题库含答案(典型题)
- 新收入准则深度解读和案例分析以及税会差异分析
- 陶瓷专利导航分析报告
- 第3课《美丽的川西高原》课件
- 《工法编写要求》课件
- 新婚避孕知识讲座
- 黄精加工项目可行性方案
- LTC与铁三角从线索到回款
- 外贸业务员负责外贸业务开展
- 课程思政理念下的高中历史教学设计研究
- 工会福利培训课件
评论
0/150
提交评论