版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm2.下列命题是假命题的是()A.如果a∥b,b∥c,那么a∥c; B.锐角三角形中最大的角一定大于或等于60°;C.两条直线被第三条直线所截,内错角相等; D.三角形三个内角和等于180°.3.如图是一张直角三角形的纸片,两直角边,现将折叠,使点与点重合,折痕为,则的长为()A. B. C. D.4.等腰三角形是轴对称图形,它的对称轴是()A.中线 B.底边上的中线 C.中线所在的直线 D.底边上的中线所在的直线5.某射击队进行1000射击比赛,每人射击10次,经过统计,甲、乙两名队员成绩如下:平均成绩都是96.2环,甲的方差是0.25,乙的方差是0.21,下列说法正确的是()A.甲的成绩比乙稳定 B.乙的成绩比甲稳定C.甲乙成绩稳定性相同 D.无法确定谁稳定6.数0.0000045用科学记数法可表示为()A.4.5×10﹣7 B.4.5×10﹣6 C.45×10﹣7 D.0.45×10﹣57.的平方根是()A.9 B.9或-9 C.3 D.3或-38.平移前后两个图形是全等图形,对应点连线()A.平行但不相等 B.不平行也不相等C.平行且相等 D.不相等9.如图,在中,,,则的度数为()A. B. C. D.10.如图,的周长为,分别以为圆心,以大于的长为半径画圆弧,两弧交于点,直线与边交于点,与边交于点,连接,的周长为,则的长为()A. B. C. D.11.2可以表示为()A.x3+x3 B.2x4-x C.x3·x3 D.x212.若解关于的方程时产生增根,那么的值为()A.1 B.2 C.0 D.-1二、填空题(每题4分,共24分)13.如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,图中包括实线、虚线在内共有全等三角形______对14.计算:(x+5)(x-7)=_____.15.若是完全平方式,则的值为______.16.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以DC,BC,AB为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=64,S1=9,则S1的值为_____.17.如图,已知直线y=ax+b和直线y=kx交于点P(-4,-2),则关于x,y的二元一次方程组的解是________.18.如果的乘积中不含项,则m为__________.三、解答题(共78分)19.(8分)用分式方程解决问题:元旦假期有两个小组去攀登--座高h米的山,第二组的攀登速度是第--组的a倍.(1)若,两小组同时开始攀登,结果第二组比第一组早到达顶峰.求两个小组的攀登速度.(2)若第二组比第一组晚出发,结果两组同时到达顶峰,求第二组的攀登速度比第一组快多少?(用含的代数式表示)20.(8分)证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为A1,B1,C1;(2)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标是.(3)在y轴上是否存在点Q.使得S△ACQ=S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由.22.(10分)计算:(1)﹣12019+﹣(2)(﹣3x2y)2•2x3÷(﹣3x3y4)(3)x2(x+2)﹣(2x﹣2)(x+3)(4)()2019×(﹣2×)201823.(10分)象山红美人柑橘是我省农科院研制的优质品种,宁波市某种植基地2017年种植“象山红美人”100亩,到2019年“象山红美人”的种植面积达到196亩.(1)求该基地这两年“象山红美人”种植面积的平均增长率;(2)市场调查发现,当“象山红美人”的售价为45元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“象山红美人”的平均成本价为33元/千克,若使销售“象山红美人”每天获利3150元,则售价应降低多少元?24.(10分)如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含ab的式子表示)(2)若,求图2中的空白正方形的面积.(3)观察图2,用等式表示出,ab和的数量关系.25.(12分)某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元.(1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进的这种水果全部售完,利润不低于950元,则每千克这种水果的标价至少是多少元?26.如图,在四边形ABCD中,,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.
参考答案一、选择题(每题4分,共48分)1、D【解析】首先根据题意画出图形,利用勾股定理计算出AC的长.【详解】根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC==15(cm),则这只铅笔的长度大于15cm.故选D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.2、C【分析】根据平行线的性质和判定和三角形的内角对每一个选项进行判断即可.【详解】解:A、如果a∥b,b∥c,那么a∥c,是真命题,不符合题意,本选项错误;B、锐角三角形中最大的角一定大于或等于60°,是真命题,不符合题意,本选项错误;C、两条直线被第三条直线所截,若这两条直线平行,则内错角相等,故是假命题,符合题意,本选项正确;D、三角形三个内角和等于180°,真命题,不符合题意,本选项错误;故选:C.【点睛】本题考查了真假命题的判断,掌握平行线的性质和判定和三角形内角问题是解题关键.3、B【分析】首先设AD=xcm,由折叠的性质得:BD=AD=xcm,又由BC=8cm,可得CD=8-x(cm),然后在Rt△ACD中,利用勾股定理即可求得方程,解方程即可求得答案.【详解】设AD=xcm,由折叠的性质得:BD=AD=xcm,∵在Rt△ABC中,AC=6cm,BC=8cm,∴CD=BC-BD=(8-x)cm,在Rt△ACD中,AC2+CD2=AD2,即:62+(8-x)2=x2,解得:x=,∴AD=cm.故选:B.【点睛】此题考查了折叠的性质与勾股定理的知识.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系.4、D【分析】根据等腰三角形的三线合一的性质,可得出答案.【详解】解:等腰三角形的对称轴是顶角的角平分线所在直线,底边高所在的直线,底边中线所在直线,
A、中线,错误;
B、底边上的中线,错误;
C、中线所在的直线,错误;
D、底边上的中线所在的直线,正确.
故选D.【点睛】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称及对称轴的定义.5、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各组数据偏离平均数越小,即波动越小,数据越稳定.据此求解即可.【详解】解:∵甲的方差是0.25,乙的方差是0.21,∴乙的方差<甲的方差,∴乙的成绩比甲稳定.故选:B.【点睛】本题考查了根据方差的意义在实际问题中的简单应用,明确方差的意义是解题的关键.6、B【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000045=4.5×10-1.故选:B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、D【分析】根据算术平方根的定义和平方根的定义计算即可.【详解】解:∵=9∴的平方根为3或-3故选D.【点睛】此题考查的是算术平方根和平方根的计算,掌握算术平方根的定义和平方根的定义是解决此题的关键.8、C【分析】根据平移的性质即可得出答案.【详解】解:平移前后两个图形是全等图形,对应点连线平行且相等.故选:C.【点睛】本题利用了平移的基本性质:①图形平移前后的形状和大小没有变化,只是位置发生变化;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9、D【分析】由题意根据三角形内角和为180°进行分析计算,即可得解.【详解】解:∵在中,,,∴=180°-90°-54°=36°.故选:D.【点睛】本题考查三角形内角和定理,熟练掌握三角形内角和为180°是解题关键,同时也可利用直角三角形两锐角互余进行分析.10、A【分析】将△GBC的周长转化为BC+AC,再根据△ABC的周长得出AB的长,由作图过程可知DE为AB的垂直平分线,即可得出BF的长.【详解】解:由作图过程可知:DE垂直平分AB,∴BF=AB,BG=AG,又∵△GBC的周长为14,则BC+BG+GC=BC+AC=14,∴AB=26-BC-AC=12,∴BF=AB=6.故选A.【点睛】本题考查了作图-垂直平分线,垂直平分线的性质,三角形的周长,解题的关键是△GBC的周长转化为BC+AC的长,突出了“转化思想”.11、A【分析】根据整式的运算法则即可求出答案.【详解】B、原式=,故B的结果不是.C、原式=,故C的结果不是.D、原式=,故D的结果不是.故选A.【点睛】本题主要考查整式的运算法则,熟悉掌握是关键.12、A【分析】关于的方程有增根,那么最简公分母为0,所以增根是x=2,把增根x=2代入化为整式方程的方程即可求出未知字母的值.【详解】将原方程两边都乘(x-2)得:,整理得,∵方程有增根,∴最简公分母为0,即增根是x=2;把x=2代入整式方程,得m=1.故答案为:A.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:根据最简公分母确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.二、填空题(每题4分,共24分)13、4【分析】共有四对,分别是△ABD≌△CDB,△ABD≌△C'DB,△DCB≌△C'DB,△AOB≌△C'OD.【详解】∵四边形ABCD是长方形,∴∠A=∠C=90°,AB=CD,AD=BC,∴△ABD≌△CDB(HL),∵△BDC是将长方形纸牌ABCD沿着BD折叠得到的,∴BC'=AD,BD=BD,∠C'=∠A,∴△ABD≌△C'DB(HL),同理△DCB≌△C'DB,∵∠A=∠C',∠AOB=∠C'OD,AB=C'D,∴△AOB≌△C'OD(AAS),所以共有四对全等三角形.故答案为4.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14、【分析】原式利用多项式乘以多项式法则计算即可得到结果.【详解】.故答案为:.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.15、9【分析】利用完全平方公式的结构特征判断即可.【详解】∵是完全平方式,∴,∴k=9,故答案为9.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的运算.16、2【分析】由已知可以得到+,代入各字母值计算可以得到解答.【详解】解:如图,过A作AE∥DC交BC于E点,
则由题意可知∠ABC+∠AEB=90°,且BE=AD=BC,AE=DC,∴三角形ABE是直角三角形,∴,即,∴,故答案为2.【点睛】本题考查平行四边形、正方形面积与勾股定理的综合应用,由已知得到三个正方形面积的关系式是解题关键.17、【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【详解】∵直线y=ax+b和直线y=kx交点P的坐标为(-4,-2),
∴关于x,y的二元一次方程组组的解为.
故答案为.【点睛】此题考查一次函数与二元一次方程(组),解题关键在于掌握图像交点的意义.18、【分析】把式子展开,找到x2项的系数和,令其为1,可求出m的值.【详解】=x3+3mx2-mx-2x2-6mx+2m,又∵的乘积中不含项,∴3m-2=1,∴m=.【点睛】考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为1.三、解答题(共78分)19、(1)第一组,第二组;(2).【分析】(1)设第一组的速度为,则第二组的速度为,根据两个小组同时开始攀登,第二组比第一组早,列方程求解.(2)设第一组的速度为,则第二组的速度为,根据两个小组去攀登另一座高的山,第二组比第一组晚出发,结果两组同时到达顶峰,列方程求解.【详解】解:(1)设第一组的速度为,则第二组的速度为,由题意得,,解得:,经检验:是原分式方程的解,且符合题意,则.答:第一组的攀登速度,第二组的攀登速度;(2)设第一组的平均速度为,则第二组的平均速度为,由题意得,,解得:,经检验:是原分式方程的解,且符合题意,则,答:第二组的平均攀登速度比第一组快.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列分式方程求解,注意检验.20、见解析【分析】由HL证明Rt△ABH≌Rt△DEK得∠B=∠E,再用边角边证明△ABC≌△DEF.【详解】已知:如图所示,在△ABC和△DEF中,AB=DE,BC=EF,AH⊥BC,DK⊥EF,且AH=DK.求证:△ABC≌△DEF,证明:∵AH⊥BC,DK⊥EF,∴∠AHB=∠DKE=90°,在Rt△ABH和Rt△DEK中,,∴Rt△ABH≌Rt△DEK(HL),∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)【点睛】本题综合考查了全等三角形的判定与性质和命题的证明方法,重点掌握全等三角形的判定与性质,难点是将命题用几何语言规范书写成几何证明格式.21、(1)(﹣1,1),(﹣4,2),(﹣3,4);(2)(2,0);(3)存在,或.【分析】(1)作出A、B、C关于y轴的对称点A′、B′、C′即可得到坐标;(2)作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小;(3)存在.设Q(0,m),由S△ACQ=S△ABC可知三角形ACQ的面积,延长AC交y轴与点D,求出直线AC解析式及点D坐标,分点Q在点D上方和下方两种情况,构建方程即可解决问题.【详解】解:(1)△A1B1C1如图所示,A1(﹣1,1),B1(﹣4,2),C1(﹣3,4);故答案为:(﹣1,1),(﹣4,2),(﹣3,4);(2)如图作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小,此时点P的坐标是(2,0);故答案为:(2,0);(3)存在.设Q(0,m),S△ABC=(9﹣×2×3﹣×1×3﹣×1×2)∵S△ACQ=S△ABC,如图,延长AC交y轴与点D,设直线AC的解析式为将点代入得,解得所以所以点当点Q在点D上方时,连接CQ、AQ,,解得;当点Q在点D上方时,连接CQ、AQ,,解得,综合上述,点Q的坐标为或.【点睛】本题考查了平面直角坐标系中的轴对称,涉及了线段和的最小值问题及三角形面积问题,灵活的结合图形确定点P的位置及表示三角形的面积是解题的关键.22、(1)0;(2)﹣6x4y﹣2;(3)x3﹣4x+6;(4)【分析】(1)根据整式的加减法可以解答本题;(2)根据积的乘方和同底数幂的乘除法可以解答本题;(3)根据单项式乘多项式和多项式乘多项式可以解答本题;(4)根据积的乘方和倒数的知识即可解答.【详解】解:(1)−12019+﹣=−1+3−2=0;(2)(−3x2y)2•2x3÷(−3x3y4)=9x4y2•2x3÷(−3x3y4)==;(3)x2(x+2)−(2x−2)(x+3)=x3+2x2−2x2−6x+2x+6=x3−4x+6;(4)=====.【点睛】本题考查了实数的混合运算,解题的关键是熟练实数运算的计算方法.23、(1)平均增长率为40%;(2)售价应降低5元.【分析】(1)设该基地这两年种植面积的平均增长率为,增长两次后种植面积为,达到196亩即可列出方程求解;(2)设售价应降低元,则每天的销量为千克,每千克的利润为(45-m-33)元,再根据总利润=单个利润×数量即可列出方程求解.【详解】解:(1)设该基地这两年种植面积的平均增长率为,根据题意可得:,两边同时除以100,解得或-2.4(舍去),∴平均增长率为40%,故答案为:40%;(2)设售价应降低元,则每天的销量为千克,根据题意可得:解得或,当时,每天的销量为:200+50×3=350千克,当时,每天的销量为:200+50×5=450千克,∵要减少库存,故每天的销量越多越好,∴售价应降低5元,故答案为:售价应降低5元.【点睛】本题考查了一元二次方程在增长率问题和销售问题中的应用,根据题目正确列出方程是解题的关键.24、(1)2a-b;(2)25;(3)8ab.【分析】(1)根据长方形的长是2a,宽是b,可以得到小正方形的边长是长与宽的的差;(2)从图中可以看出小正方形的面积=大正方形的面积-4个小长方形的面积,再根据2a+b=7求出小正方形的面积;(3)利用平方差公式得到:,ab和之间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品发明专利权转让协议
- 工地民工劳务协议书
- 房屋拆除合同及安全协议书
- 山东省济南市2024年七年级上学期期中数学试题【附答案】
- 第5课 工业革命与工厂制度课件高二历史统编版(2019)选择性必修2经济与社会生活
- 河北省安平中学高中数学人教A版选修4-4教案13曲线的极坐标方程的意义
- 工程项目管理计划书标准模板
- 2024年北京中考物理第三次模拟卷含答案解析
- 工程数学试卷及答案
- 山西省吕梁市2023-2024学年高二下学期5月质量检测试题英语
- GBZ(卫生) 5-2016职业性氟及其无机化合物中毒的诊断
- 音乐能告诉我们什么
- GB/T 18952-2017橡胶配合剂硫磺及试验方法
- 膝关节置换术的护理课件
- 医院统计学试题+答案
- 二年级语文上册优秀课件-第三单元复习
- 集成电路关键材料及设备工作方案
- 防雷检测技术规范考试题库(汇总版)
- 2022-2023学年浙科版(2019)选择必修三 5.1 转基因产品的安全性引发社会的广泛关注(1) 课件(29张)
- 小学生课间安全教育
- 卢卡奇教学讲解课件
评论
0/150
提交评论