专题34 动点综合问题(33题)(解析版)-2024年中考数学真题分类汇编_第1页
专题34 动点综合问题(33题)(解析版)-2024年中考数学真题分类汇编_第2页
专题34 动点综合问题(33题)(解析版)-2024年中考数学真题分类汇编_第3页
专题34 动点综合问题(33题)(解析版)-2024年中考数学真题分类汇编_第4页
专题34 动点综合问题(33题)(解析版)-2024年中考数学真题分类汇编_第5页
已阅读5页,还剩80页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE13PAGE14专题34动点综合问题(33题)一、单选题1.(2024·甘肃临夏·中考真题)如图1,矩形中,为其对角线,一动点从出发,沿着的路径行进,过点作,垂足为.设点的运动路程为,为,与的函数图象如图2,则的长为(

)A. B. C. D.【答案】B【分析】本题考查了动点问题的函数图象,根据图象得出信息是解题的关键.根据函数的图象与坐标的关系确定的长,再根据矩形性质及勾股定理列方程求解.【详解】解:由图象得:,当时,,此时点P在边上,设此时,则,,在中,,即:,解得:,,故选:B.2.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰中,,,动点E,F同时从点A出发,分别沿射线和射线的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接,以为边向下做正方形,设点E运动的路程为,正方形和等腰重合部分的面积为下列图像能反映y与x之间函数关系的是(

)A. B. C. D.【答案】A【分析】本题考查动态问题与函数图象,能够明确y与x分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当与重合时,及当时图象的走势,和当时图象的走势即可得到答案.【详解】解:当与重合时,设,由题可得:∴,,在中,由勾股定理可得:,∴,∴,∴当时,,∵,∴图象为开口向上的抛物线的一部分,当在下方时,设,由题可得:∴,,∵,,∴,∴,∴,∴,∴当时,,∵,∴图象为开口向下的抛物线的一部分,综上所述:A正确,故选:A.3.(2024·四川泸州·中考真题)如图,在边长为6的正方形中,点E,F分别是边上的动点,且满足,与交于点O,点M是的中点,G是边上的点,,则的最小值是(

A.4 B.5 C.8 D.10【答案】B【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,直角三角形的性质,勾股定理等等,先证明得到,进而得到,则由直角三角形的性质可得,如图所示,在延长线上截取,连接,易证明,则,可得当H、D、F三点共线时,有最小值,即此时有最小值,最小值即为的长的一半,求出,在中,由勾股定理得,责任的最小值为5.【详解】解:∵四边形是正方形,∴,又∵,∴,∴,∴,∵点M是的中点,∴;如图所示,在延长线上截取,连接,

∵,∴,∴,∴,∴当H、D、F三点共线时,有最小值,即此时有最小值,最小值即为的长的一半,∵,,∴,∴,在中,由勾股定理得,∴的最小值为5,故选:B.4.(2024·甘肃·中考真题)如图1,动点P从菱形的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,的长为y,y与x的函数图象如图2所示,当点P运动到中点时,的长为()A.2 B.3 C. D.【答案】C【分析】结合图象,得到当时,,当点P运动到点B时,,根据菱形的性质,得,继而得到,当点P运动到中点时,的长为,解得即可.本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.【详解】结合图象,得到当时,,当点P运动到点B时,,根据菱形的性质,得,故,当点P运动到中点时,的长为,故选C.5.(2024·湖南长沙·中考真题)如图,在菱形中,,,点E是边上的动点,连接,,过点A作于点P.设,,则y与x之间的函数解析式为(不考虑自变量x的取值范围)(

)A. B. C. D.【答案】C【分析】本题考查菱形的性质、含30度角的直角三角形的性质、相似三角形的判定与性质,利用相似三角形的性质求解x、y的关系式是解答的关键.过D作,交延长线于H,则,根据菱形的性质和平行线的性质得到,,,进而利用含30度角的直角三角形的性质,证明得到,然后代值整理即可求解.【详解】解:如图,过D作,交延长线于H,则,∵在菱形中,,,∴,,,∴,,在中,,∵,∴,又,∴,∴,∵,,∴,∴,故选:C.二、填空题6.(2024·江苏扬州·中考真题)如图,已知两条平行线、,点A是上的定点,于点B,点C、D分别是、上的动点,且满足,连接交线段于点E,于点H,则当最大时,的值为.【答案】【分析】证明,得出,根据,得出,说明点H在以为直径的圆上运动,取线段的中点O,以点O为圆心,为半径画圆,则点在上运动,说明当与相切时最大,得出,根据,利用,即可求出结果.【详解】解:∵两条平行线、,点A是上的定点,于点B,∴点B为定点,的长度为定值,∵,∴,,∵,∴,∴,∵,∴,∴点H在以为直径的圆上运动,如图,取线段的中点O,以点O为圆心,为半径画圆,则点在上运动,∴当与相切时最大,∴,∵,∴,∵,∴,故答案为:.【点睛】本题主要考查了圆周角定理,全等三角形的性质和判定,平行线的性质,切线的性质,解直角三角形等知识点,解题的关键是确定点H的运动轨迹.7.(2024·四川广安·中考真题)如图,在中,,,,点为直线上一动点,则的最小值为.【答案】【分析】如图,作关于直线的对称点,连接交于,则,,,当重合时,最小,最小值为,再进一步结合勾股定理求解即可.【详解】解:如图,作关于直线的对称点,连接交于,则,,,∴当重合时,最小,最小值为,∵,,在中,∴,,∴,,∵,∴,故答案为:【点睛】此题考查了平行四边形的性质,勾股定理,轴对称的性质,求最小值问题,正确理解各性质及掌握各知识点是解题的关键.8.(2024·四川凉山·中考真题)如图,的圆心为,半径为,是直线上的一个动点,过点作的切线,切点为,则的最小值为【答案】【分析】记直线与x,y轴分别交于点A,K,连接;由直线解析式可求得点A、K的坐标,从而得均是等腰直角三角形,由相切及勾股定理得:,由,则当最小时,最小,点P与点K重合,此时最小值为,由勾股定理求得的最小值,从而求得结果.【详解】解:记直线与x,y轴分别交于点A,K,连接,当,,当,即,解得:,即;而,∴,∴均是等腰直角三角形,∴,∴,∵与相切,∴,∴,∵,∴当最小时即最小,∴当时,取得最小值,即点P与点K重合,此时最小值为,在中,由勾股定理得:,∴,∴最小值为.【点睛】本题考查了圆的切线的性质,勾股定理,一次函数与坐标轴的交点问题,垂线段最短,正确添加辅助线是解题的关键.9.(2024·黑龙江绥化·中考真题)如图,已知,点为内部一点,点为射线、点为射线上的两个动点,当的周长最小时,则.【答案】/度【分析】本题考查了轴对称最短路线问题,等腰三角形的性质,三角形内角和定理的应用;作点P关于,的对称点.连接.则当,是与,的交点时,的周长最短,根据对称的性质结合等腰三角形的性质即可求解.【详解】解:作关于,的对称点.连接.则当,是与,的交点时,的周长最短,连接,关于对称,∴,同理,,,,,是等腰三角形.,故答案为:.10.(2024·四川成都·中考真题)如图,在平面直角坐标系中,已知,,过点作轴的垂线,为直线上一动点,连接,,则的最小值为.【答案】5【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A关于直线的对称点,连交直线于点C,连,得到,,再由轴对称图形的性质和两点之间线段最短,得到当三点共线时,的最小值为,再利用勾股定理求即可.【详解】解:取点A关于直线的对称点,连交直线于点C,连,则可知,,∴,即当三点共线时,的最小值为,∵直线垂直于y轴,∴轴,∵,,∴,∴在中,,故答案为:511.(2024·四川内江·中考真题)如图,在中,,,是边上一点,且,点是的内心,的延长线交于点,是上一动点,连接、,则的最小值为.

【答案】【分析】在取点F,使,连接,,过点F作于H,利用三角形内心的定义可得出,利用证明,得出,则,当C、P、F三点共线时,最小,最小值为,利用含的直角三角形的性质求出,利用勾股定理求出,即可.【详解】解:在取点F,使,连接,,过点F作于H,

∵I是的内心,∴平分,∴,又,∴,∴,∴,当C、P、F三点共线时,最小,最小值为,∵,,∴,∴,∴,,∴,∴的最小值为.故答案为:.【点睛】本题考查了三角形的内心,全等三角形的判定与性质,含的直角三角形的性质,勾股定理等知识,明确题意,添加合适辅助线,构造全等三角形和含的直角三角形是解题的关键.12.(2024·山东烟台·中考真题)如图,在中,,,.E为边的中点,F为边上的一动点,将沿翻折得,连接,,则面积的最小值为.【答案】/【分析】根据平行四边形的性质得到,,,由折叠性质得到,进而得到点在以E为圆心,4为半径的圆上运动,如图,过E作交延长线于M,交圆E于,此时到边的距离最短,最小值为的长,即此时面积的最小,过C作于N,根据平行线间的距离处处相等得到,故只需利用锐角三角函数求得即可求解.【详解】解:∵在中,,,∴,,则,∵E为边的中点,∴,∵沿翻折得,∴,∴点在以E为圆心,4为半径的圆上运动,如图,过E作交延长线于M,交圆E于,此时到边的距离最短,最小值为的长,即面积的最小,过C作于N,∵,∴,在中,,,∴,∴,∴面积的最小值为,故答案为:.【点睛】本题考查平行四边形的性质、折叠性质、圆的有关性质以及直线与圆的位置关系、锐角三角函数等知识,综合性强的填空压轴题,得到点的运动路线是解答的关键.13.(2024·四川宜宾·中考真题)如图,正方形的边长为1,M、N是边、上的动点.若,则的最小值为.【答案】/【分析】将顺时针旋转得到,再证明,从而得到,再设设,,得到,利用勾股定理得到,即,整理得到,从而利用完全平方公式得到,从而得解.【详解】解:∵正方形的边长为1,∴,,将顺时针旋转得到,则,∴,,,,∴点P、B、M、C共线,∵,∴,∵,,,∴,∴,∴,设,,则,,∴,∵,∴,即,整理得:,∴,当且仅当,即,也即时,取最小值,故答案为:.【点睛】本题考查全等三角形的判定和性质,正方形的性质,勾股定理,二次根式的运算,完全平方公式等知识,证明和得到是解题的关键.14.(2024·四川宜宾·中考真题)如图,在平行四边形中,,E、F分别是边上的动点,且.当的值最小时,则.

【答案】【分析】本题主要考查了平行四边形的性质,三角形全等的判定和性质,相似三角形的判定和性质.延长,截取,连接,,证明,得出,说明当最小时,最小,根据两点之间线段最短,得出当A、E、G三点共线时,最小,即最小,再证明,根据相似三角形的性质,求出结果即可.【详解】解:延长,截取,连接,,如图所示:

∵四边形为平行四边形,∴,,,∴,∵,,∴,∴,∴,∴当最小时,最小,∵两点之间线段最短,∴当A、E、G三点共线时,最小,即最小,且最小值为的长,

∵,∴,∴,即,解得.故答案为:.三、解答题15.(2024·江苏苏州·中考真题)如图,中,,,,,反比例函数的图象与交于点,与交于点E.

(1)求m,k的值;(2)点P为反比例函数图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作,交y轴于点M,过点P作轴,交于点N,连接,求面积的最大值,并求出此时点P的坐标.【答案】(1),(2)最大值是,此时【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B的坐标,然后利用待定系数法求出直线的函数表达式,把D的坐标代入直线的函数表达式求出m,再把D的坐标代入反比例函数表达式求出k即可;(2)延长交y轴于点Q,交于点L.利用等腰三角形的判定与性质可得出,设点P的坐标为,,则可求出,然后利用二次函数的性质求解即可.【详解】(1)解:,,.又,.,点.设直线的函数表达式为,将,代入,得,解得,∴直线的函数表达式为.将点代入,得..将代入,得.(2)解:延长交y轴于点Q,交于点L.

,,.轴,,.,,,.设点P的坐标为,,则,...当时,有最大值,此时.16.(2024·四川自贡·中考真题)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于,两点.(1)求反比例函数和一次函数的解析式;(2)P是直线上的一个动点,的面积为21,求点P坐标;(3)点Q在反比例函数位于第四象限的图象上,的面积为21,请直接写出Q点坐标.【答案】(1),(2)点P坐标为或;(3)Q点坐标为或【分析】(1)先求出,再代入,得出,再运用待定系数法解一次函数的解析式,即可作答.(2)先得出直线与直线的交点的坐标,根据求不规则面积运用割补法列式化简得,解出,即可作答.(3)要进行分类讨论,当点在点的右边时和点在点的左边时,根据求不规则面积运用割补法列式,其中运用公式法解方程,注意计算问题,即可作答.【详解】(1)解:依题意把代入,得出解得把代入中,得出∴则把和分别代入得出解得∴;(2)解:记直线与直线的交点为∵∴当时,则∴∵P是直线上的一个动点,∴设点,∵的面积为21,∴即∴解得或∴点P坐标为或;(3)解:由(1)得出∵点Q在反比例函数位于第四象限的图象上,∴设点Q的坐标为如图:点在点的右边时∵的面积为21,和∴整理得解得(负值已舍去)经检验是原方程的解,∴Q点坐标为如图:点在点的左边时∵的面积为21,和∴整理得解得,符合题意,,不符合题意,则,故综上:Q点坐标为或.【点睛】本题考查了一次函数与反比例函数的交点问题,几何综合,待定系数法求一次函数的解析式,割补法求面积,公式法解方程,正确掌握相关性质内容是解题的关键.17.(2024·四川泸州·中考真题)如图,在平面直角坐标系中,已知抛物线经过点,与y轴交于点B,且关于直线对称.(1)求该抛物线的解析式;(2)当时,y的取值范围是,求t的值;(3)点C是抛物线上位于第一象限的一个动点,过点C作x轴的垂线交直线于点D,在y轴上是否存在点E,使得以B,C,D,E为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.【答案】(1)(2)(3)存在点以B,C,D,E为顶点的四边形是菱形,边长为或2【分析】本题考查二次函数的综合应用,菱形的性质,正确的求出函数解析式,利用数形结合和分类讨论的思想进行求解,是解题的关键.(1)待定系数法求出函数解析式即可;(2)分和,两种情况,结合二次函数的增减性进行求解即可.(3)分为菱形的边和菱形的对角线两种情况进行讨论求解即可.【详解】(1)解:∵抛物线经过点,与y轴交于点B,且关于直线对称,∴,解得:,∴;(2)∵抛物线的开口向下,对称轴为直线,∴抛物线上点到对称轴上的距离越远,函数值越小,∵时,,①当时,则:当时,函数有最大值,即:,解得:或,均不符合题意,舍去;②当时,则:当时,函数有最大值,即:,解得:;故;(3)存在;当时,解得:,当时,,∴,,设直线的解析式为,把代入,得:,∴,设,则:,∴,,,当B,C,D,E为顶点的四边形是菱形时,分两种情况:①当为边时,则:,即,解得:(舍去)或,此时菱形的边长为;②当为对角线时,则:,即:,解得:或(舍去)此时菱形的边长为:;综上:存在以B,C,D,E为顶点的四边形是菱形,边长为或2.18.(2024·四川南充·中考真题)已知抛物线与轴交于点,.

(1)求抛物线的解析式;(2)如图,抛物线与轴交于点,点为线段上一点(不与端点重合),直线,分别交抛物线于点,,设面积为,面积为,求的值;(3)如图,点是抛物线对称轴与轴的交点,过点的直线(不与对称轴重合)与抛物线交于点,,过抛物线顶点作直线轴,点是直线上一动点.求的最小值.【答案】(1)(2)(3)【分析】()利用待定系数法即可求解;()设,直线为,求出,直线为,求出,联立方程组得,,再根据,即可求解;()设直线为,由得,得,设,,联立直线与抛物,得,根据根与系数的关系可得:,,作点关于直线的对称点,连接,则有,过点作于F,则,则,,根据勾股定理得,即可求出最小值.【详解】(1)解:∵抛物线与轴交于点,,,

解得,∴抛物线的解析式为;(2)设,直线为,据题意得,,解得,∴,联立得,解得或,∴,设,直线为,据题意得,,解得,∴,联立得,解得或,∴,

,∴;(3)设直线为,由得,∴,∴,

设,,联立直线与抛物线,得,,根据根与系数的关系可得:,,作点关于直线的对称点,连接,

由题意得直线,则,∴,过点作于F,则.则,,

在中,,

即当时,,此时,故的最小值为.【点睛】本题考查了二次函数和一次函数的图象与性质,二次函数与一元二次方程的关系,解一元二次方程,根的判别式,勾股定理,轴对称的性质,熟练掌握知识点的应用是解题的关键.19.(2024·吉林·中考真题)如图,在中,,,,是的角平分线.动点P从点A出发,以的速度沿折线向终点B运动.过点P作,交于点Q,以为边作等边三角形,且点C,E在同侧,设点P的运动时间为,与重合部分图形的面积为.

(1)当点P在线段上运动时,判断的形状(不必证明),并直接写出的长(用含t的代数式表示).(2)当点E与点C重合时,求t的值.(3)求S关于t的函数解析式,并写出自变量t的取值范围.【答案】(1)等腰三角形,(2)(3)【分析】(1)过点Q作于点H,根据“平行线+角平分线”即可得到,由,得到,解得到;(2)由为等边三角形得到,而,则,故,解得;(3)当点P在上,点E在上,重合部分为,过点P作于点G,,则,此时;当点P在上,点E在延长线上时,记与交于点F,此时重合部分为四边形,此时,因此,故可得,此时;当点P在上,重合部分为,此时,,解直角三角形得,故,此时,再综上即可求解.【详解】(1)解:过点Q作于点H,由题意得:

∵,,∴,∵平分,∴,∵,∴,∴,∴,∴为等腰三角形,∵,∴,∴在中,;(2)解:如图,

∵为等边三角形,∴,由(1)得,∴,即,∴;(3)解:当点P在上,点E在上,重合部分为,过点P作于点G,

∵,∴,∵是等边三角形,∴,∴,由(2)知当点E与点C重合时,,∴;当点P在上,点E在延长线上时,记与交于点F,此时重合部分为四边形,如图,

∵是等边三角形,∴,而,∴,∴,∴,当点P与点D重合时,在中,,∴,∴;当点P在上,重合部分为,如图,

∵,由上知,∴,∴此时,∴,∵是等边三角形,∴,∴,∴,∵,∴,∴当点P与点B重合时,,解得:,∴,综上所述:.【点睛】本题考查了直角三角形的性质,解直角三角形的相关计算,等腰三角形的判定与性质,等边三角形的性质,平行线的性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.20.(2024·四川德阳·中考真题)如图,抛物线与轴交于点和点,与轴交于点.(1)求抛物线的解析式;(2)当时,求的函数值的取值范围;(3)将拋物线的顶点向下平移个单位长度得到点,点为抛物线的对称轴上一动点,求的最小值.【答案】(1)(2)(3)的最小值为:【分析】(1)直接利用待定系数法求解二次函数的解析式即可;(2)求解的对称轴为直线,而,再利用二次函数的性质可得答案;(3)求解,,可得,求解直线为,及,证明在直线上,如图,过作于,连接,过作于,可得,,证明,可得,可得,再进一步求解即可.【详解】(1)解:∵抛物线与轴交于点,∴,解得:,∴抛物线的解析式为:;(2)解:∵的对称轴为直线,而,∴函数最小值为:,当时,,当时,,∴函数值的范围为:;(3)解:∵,当时,,∴,当时,解得:,,∴,∴,设直线为,∴,∴,∴直线为,∵拋物线的顶点向下平移个单位长度得到点,而顶点为,∴,∴在直线上,如图,过作于,连接,过作于,∵,,∴,,∵对称轴与轴平行,∴,∴,∴,由抛物线的对称性可得:,,∴,当三点共线时取等号,∴,∴,∴,即的最小值为:.【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,利用轴对称的性质求解线段和的最小值,锐角三角函数的应用,做出合适的辅助线是解本题的关键.21.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,等边三角形的边在x轴上,点A在第一象限,的长度是一元二次方程的根,动点P从点O出发以每秒2个单位长度的速度沿折线运动,动点Q从点O出发以每秒3个单位长度的速度沿折线运动,P、Q两点同时出发,相遇时停止运动.设运动时间为t秒(),的面积为S.(1)求点A的坐标;(2)求S与t的函数关系式;(3)在(2)的条件下,当时,点M在y轴上,坐标平面内是否存在点N,使得以点O、P、M、N为顶点的四边形是菱形.若存在,直接写出点N的坐标;若不存在,说明理由.【答案】(1)点A的坐标为(2)(3)存在,,,,【分析】(1)运用因式分解法解方程求出的长,根据等边三角形的性质得出,过点A作轴,垂足为C,求出的长即可;(2)分,和三种情况,运用三角形面积公式求解即可;(3)当时求出,得,分为边和对角线两种情况可得点N的坐标;当和时不存在以点O、P、M、N为顶点的四边形是菱形【详解】(1)解:,解得,的长度是的根,∵是等边三角形,∴,过点A作轴,垂足为C,在中,∴,∴点A的坐标为(2)解:当时.过P作轴,垂足为点D,∴,,∴∴,;当时,过Q作,垂足为点E∵∴又∴,又,当时,过O作,垂足为F∴,同理可得,,∴;综上所述(3)解:当时,解得,∴,过点P作轴于点G,则∴∴点P的坐标为;当为边时,将沿轴向下平移4个单位得,此时,四边形是菱形;将沿轴向上平移4个单位得,此时,四边形是菱形;如图,作点P关于y轴的对称点,当时,四边形是菱形;当为对角线时,设的中点为T,过点T作,交y轴于点M,延长到,使连接,过点作轴于点,则∴∴,即,解得,,∴,∴;当,解得,,不符合题意,此情况不存在;当时,解得,,不符合题意,此情况不存在;综上,点N的坐标为,,,【点睛】本题主要考查运用因式分解法解一元二次方程,等边三角形的性质,勾股定理,角所对的直角边等于斜边的一半,三角形的面积,菱形的判定与性质,正确作出辅助线和分类讨论是解答本题的关键22.(2024·江西·中考真题)综合与实践如图,在中,点D是斜边上的动点(点D与点A不重合),连接,以为直角边在的右侧构造,,连接,.特例感知(1)如图1,当时,与之间的位置关系是______,数量关系是______;类比迁移(2)如图2,当时,猜想与之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F与点C关于对称,连接,,,如图3.已知,设,四边形的面积为y.①求y与x的函数表达式,并求出y的最小值;②当时,请直接写出的长度.【答案】(1),(2)与之间的位置关系是,数量关系是;(3)①y与x的函数表达式,当时,的最小值为;②当时,为或.【分析】(1)先证明,,,可得;再结合全等三角形的性质可得结论;(2)先证明,,结合,可得;再结合相似三角形的性质可得结论;(3)①先证明四边形为正方形,如图,过作于,可得,,再分情况结合勾股定理可得函数解析式,结合函数性质可得最小值;②如图,连接,,,证明,可得在上,且为直径,则,过作于,过作于,求解正方形面积为,结合,再解方程可得答案.【详解】解:(1)∵,∴,,∵,∴,,∴;∴,,∴,∴,∴与之间的位置关系是,数量关系是;(2)与之间的位置关系是,数量关系是;理由如下:∵,∴,,∵,∴;∴,,∴,∴,∴与之间的位置关系是,数量关系是;(3)由(1)得:,,,∴,都为等腰直角三角形;∵点F与点C关于对称,∴为等腰直角三角形;,∴四边形为正方形,如图,过作于,∵,,∴,,当时,∴,∴,如图,当时,此时,同理可得:,∴y与x的函数表达式为,当时,的最小值为;②如图,∵,正方形,记正方形的中心为,∴,连接,,,∴,∴在上,且为直径,∴,过作于,过作于,∴,,∴,∴,∴正方形面积为,∴,解得:,,经检验都符合题意,如图,综上:当时,为或.【点睛】本题考查的是全等三角形的判定与性质,正方形的判定与性质,勾股定理的应用,相似三角形的判定与性质,直角三角形斜边上的中线的性质,二次函数的性质,圆的确定及圆周角定理的应用,本题难度大,作出合适的辅助线是解本题的关键.23.(2024·黑龙江齐齐哈尔·中考真题)综合与探究:如图,在平面直角坐标系中,已知直线与x轴交于点A,与y轴交于点C,过A,C两点的抛物线与x轴的另一个交点为点,点P是抛物线位于第四象限图象上的动点,过点P分别作x轴和y轴的平行线,分别交直线于点E,点F.(1)求抛物线的解析式;(2)点D是x轴上的任意一点,若是以为腰的等腰三角形,请直接写出点D的坐标;(3)当时,求点P的坐标;(4)在(3)的条件下,若点N是y轴上的一个动点,过点N作抛物线对称轴的垂线,垂足为M,连接,则的最小值为______.【答案】(1)(2)(3)(4)【分析】本题主要考查了求函数解析式、二次函数与几何的综合等知识点,掌握数形结合思想成为解题的关键.(1)先根据题意确定点A、C的坐标,然后运用待定系数法求解即可;(2)分三种情况分别画出图形,然后根据等腰三角形的定义以及坐标与图形即可解答;(3)先证明可得,设,则,可得,即,求得可得m的值,进而求得点P的坐标;(4)如图:将线段向右平移单位得到,即四边形是平行四边形,可得,即,作关于对称轴的点,则,由两点间的距离公式可得,再根据三角形的三边关系可得即可解答.【详解】(1)解:∵直线与x轴交于点A,与y轴交于点C,∴当时,,即;当时,,即;∵,∴设抛物线的解析式为,把代入可得:,解得:,∴,∴抛物线的解析式为:.(2)解:∵,,∴,∴,如图:当,∴,即;如图:当,∴,即;如图:当,∴,即;综上,点D的坐标为.(3)解:如图:∵轴,∴,∵轴,∴,∵,∴,∴,∵设,则,∴,∴,解得:(负值舍去),当时,,∴.(4)解:∵抛物线的解析式为:,∴抛物线的对称轴为:直线,如图:将线段向右平移单位得到,∴四边形是平行四边形,∴,即,作关于对称轴的点,则∴,∵,∴的最小值为.故答案为.24.(2024·四川广元·中考真题)在平面直角坐标系xOy中,已知抛物线F:经过点,与y轴交于点.(1)求抛物线的函数表达式;(2)在直线上方抛物线上有一动点C,连接交于点D,求的最大值及此时点C的坐标;(3)作抛物线F关于直线上一点的对称图象,抛物线F与只有一个公共点E(点E在y轴右侧),G为直线上一点,H为抛物线对称轴上一点,若以B,E,G,H为顶点的四边形是平行四边形,求G点坐标.【答案】(1);(2)最大值为,C的坐标为;(3)点G的坐标为,,.【分析】(1)本题考查了待定系数法解抛物线分析式,根据题意将点坐标分别代入抛物线解析式,解方程即可;(2)根据题意证明,再设的解析式为,求出的解析式,再设,则,再表示出利用最值即可得到本题答案;(3)根据题意求出,再分情况讨论当为对角线时,当为边时继而得到本题答案.【详解】(1)解:,代入,得:,解得:,∴抛物线的函数表达式为.(2)解:如图1,过点C作x轴的垂线交于点M.∴轴,∴,∴,设的解析式为,把,代入解析式得,解得:,∴.设,则,∴,∵,,∴当时,最大,最大值为.∴的最大值为,此时点C的坐标为.(3)解:由中心对称可知,抛物线F与的公共点E为直线与抛物线F的右交点,∴,∴(舍),,∴.∵抛物线F:的顶点坐标为,∴抛物线的顶点坐标为,∴抛物线的对称轴为直线.如图2,当为对角线时,由题知,∴,∴.如图3,当为边时,由题知,∴,∴.如图4,由题知,∴,∴,综上:点G的坐标为,,.25.(2024·天津·中考真题)将一个平行四边形纸片放置在平面直角坐标系中,点,点,点在第一象限,且.(1)填空:如图①,点的坐标为______,点的坐标为______;(2)若为轴的正半轴上一动点,过点作直线轴,沿直线折叠该纸片,折叠后点的对应点落在轴的正半轴上,点的对应点为.设.①如图②,若直线与边相交于点,当折叠后四边形与重叠部分为五边形时,与相交于点.试用含有的式子表示线段的长,并直接写出的取值范围;②设折叠后重叠部分的面积为,当时,求的取值范围(直接写出结果即可).【答案】(1)(2)①;②【分析】(1)根据平行四边形的性质,得出结合勾股定理,即可作答.(2)①由折叠得,,再证明是等边三角形,运用线段的和差关系列式化简,,考虑当与点重合时,和当与点B重合时,分别作图,得出的取值范围,即可作答.②根据①的结论,根据解直角三角形的性质得出,再分别以时,时,,分别作图,运用数形结合思路列式计算,即可作答.【详解】(1)解:如图:过点C作∵四边形是平行四边形,,∴∵∴∴∴∴∵∴∴故答案为:,(2)解:①∵过点作直线轴,沿直线折叠该纸片,折叠后点的对应点落在轴的正半轴上,∴,,∴∵∴∴∵四边形为平行四边形,∴,,∴是等边三角形∴∵∴∴;当与点重合时,此时与的交点为E与A重合,如图:当与点B重合时,此时与的交点为E与B重合,∴的取值范围为;②如图:过点C作由(1)得出,∴,∴当时,∴,开口向上,对称轴直线∴在时,随着的增大而增大∴;当时,如图:∴,随着的增大而增大∴在时;在时;∴当时,∵当时,过点E作,如图:∵由①得出是等边三角形,∴,∴,∴∵∴开口向下,在时,有最大值∴∴在时,∴则在时,;当时,如图,∴,随着的增大而减小∴在时,则把分别代入得出,∴在时,综上:【点睛】本题考查了平行四边形的性质,解直角三角形的性质,折叠性质,二次函数的图象性质,正确掌握相关性质内容是解题的关键.26.(2024·湖南·中考真题)已知二次函数的图像经过点,点,是此二次函数的图像上的两个动点.(1)求此二次函数的表达式;(2)如图1,此二次函数的图像与x轴的正半轴交于点B,点P在直线的上方,过点P作轴于点C,交AB于点D,连接.若,求证的值为定值;(3)如图2,点P在第二象限,,若点M在直线上,且横坐标为,过点M作轴于点N,求线段长度的最大值.【答案】(1)(2)为定值3,证明见解析(3)【分析】(1)用待定系数法求解即可;(2)先求出直线的解析式,,则,,表示出,,代入即可求解;(3)设,则,求出直线的解析式,把代入即可求出线段长度的最大值.【详解】(1)∵二次函数的图像经过点,∴,∴,∴;(2)当时,,∴,∴,设直线的解析式为,∴,∴,∴,设,则,,∴,.∴,∴的值为定值;(3)设,则,设直线的解析式为,∴,∴,∴,当时,,∴当时,线段长度的最大值.【点睛】本题考查了待定系数法求函数解析式,二次函数与几何综合,数形结合是解答本题的关键.27.(2024·广东·中考真题)【问题背景】如图1,在平面直角坐标系中,点B,D是直线上第一象限内的两个动点,以线段为对角线作矩形,轴.反比例函数的图象经过点A.【构建联系】(1)求证:函数的图象必经过点C.(2)如图2,把矩形沿折叠,点C的对应点为E.当点E落在y轴上,且点B的坐标为时,求k的值.【深入探究】(3)如图3,把矩形沿折叠,点C的对应点为E.当点E,A重合时,连接交于点P.以点O为圆心,长为半径作.若,当与的边有交点时,求k的取值范围.【答案】(1)证明见解析;(2);(3)【分析】(1)设,则,用含的代数式表示出,再代入验证即可得解;(2)先由点B的坐标和k表示出,再由折叠性质得出,如图,过点D作轴,过点B作轴,证出,由比值关系可求出,最后由即可得解;(3)当过点B时,如图所示,过点D作轴交y轴于点H,求出k的值,当过点A时,根据A,C关于直线对轴知,必过点C,如图所示,连,,过点D作轴交y轴于点H,求出k的值,进而即可求出k的取值范围.【详解】(1)设,则,∵轴,∴D点的纵坐标为,∴将代入中得:得,∴,∴,∴,∴将代入中得出,∴函数的图象必经过点C;(2)∵点在直线上,∴,∴,∴A点的横坐标为1,C点的纵坐标为2,∵函数的图象经过点A,C,∴,,∴,∴,∵把矩形沿折叠,点C的对应点为E,∴,,∴,如图,过点D作轴,过点B作轴,∵轴,∴H,A,D三点共线,∴,,∴,∵,∴,∴,∵,∴,,∴,由图知,,∴,∴;(3)∵把矩形沿折叠,点C的对应点为E,当点E,A重合,∴,∵四边形为矩形,∴四边形为正方形,,∴,,,∵轴,∴直线为一,三象限的夹角平分线,∴,当过点B时,如图所示,过点D作轴交y轴于点H,∵轴,∴H,A,D三点共线,∵以点O为圆心,长为半径作,,∴,∴,∴,,,∵轴,∴,∴,∴,∴,∴,∴,∴,当过点A时,根据A,C关于直线对轴知,必过点C,如图所示,连,,过点D作轴交y轴于点H,∵,∴为等边三角形,∵,∴,∴,,∴,,∵轴,∴,∴,∴,∴,∴,∴,∴,∴当与的边有交点时,k的取值范围为.【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,一次函数的性质,反比例函数的性质,矩形的性质,正方形的判定和性质,轴对称的性质,圆的性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.28.(2024·四川达州·中考真题)如图1,抛物线与轴交于点和点,与轴交于点.点是抛物线的顶点.

(1)求抛物线的解析式;(2)如图2,连接,,直线交抛物线的对称轴于点,若点是直线上方抛物线上一点,且,求点的坐标;(3)若点是抛物线对称轴上位于点上方的一动点,是否存在以点,,为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.【答案】(1)(2)或;(3)或或或【分析】(1)待定系数法求解析式,即可求解;(2)先求得的坐标,根据勾股定理的逆定理得出是等腰三角形,进而根据得出,连接,设交轴于点,则得出是等腰直角三角形,进而得出,则点与点重合时符合题意,,过点作交抛物线于点,得出直线的解析式为,联立抛物线解析式,即可求解;(3)勾股定理求得,根据等腰三角形的性质,分类讨论解方程,即可求解.【详解】(1)解:∵抛物线与轴交于点和点,∴解得:∴抛物线的解析式为;(2)由,当时,,则∵,则,对称轴为直线设直线的解析式为,代入,∴解得:∴直线的解析式为,当时,,则∴∴∴是等腰三角形,∴连接,设交轴于点,则∴是等腰直角三角形,∴,,又∴∴∴点与点重合时符合题意,如图所示,过点作交抛物线于点,设直线的解析式为,将代入得,解得:∴直线的解析式为联立解得:,∴综上所述,或;(3)解:∵,,∴∵点是抛物线对称轴上位于点上方的一动点,设其中∴,①当时,,解得:或②当时,,解得:③当时,,解得:或(舍去)综上所述,或或或.【点睛】本题考查了二次函数综合问题,待定系数法求解析式,面积问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.29.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,二次函数的图像经过原点和点.经过点的直线与该二次函数图象交于点,与轴交于点.(1)求二次函数的解析式及点的坐标;(2)点是二次函数图象上的一个动点,当点在直线上方时,过点作轴于点,与直线交于点,设点的横坐标为.①为何值时线段的长度最大,并求出最大值;②是否存在点,使得与相似.若存在,请求出点坐标;若不存在,请说明理由.【答案】(1),(2)①当时,有最大值为;②当P的坐标为或时,与相似【分析】(1)把,,代入求解即可,利用待定系数法求出直线解析式,然后令,求出y,即可求出C的坐标;(2)①根据P、D的坐标求出,然后根据二次函数的性质求解即可;②先利用等边对等角,平行线的判定与性质等求出,然后分,两种情况讨论过,利用相似三角形的性质、等腰三角形的判定与性质等求解即可.【详解】(1)解:把,,代入,得,解得,∴二次函数的解析式为,设直线解析式为,则,解得,∴直线解析式为,当时,,∴;(2)解:①设,则,∴,∴当时,有最大值为;②∵,,∴,又,∴,又轴,∴轴,∴,当时,如图,∴,∴轴,∴P的纵坐标为3,把代入,得,解得,,∴,∴,∴P的坐标为;当时,如图,过B作于F,则,,又,∴,∴,∴,∴,∴,解得,(舍去),∴,∴P的坐标为综上,当P的坐标为或时,与相似.【点睛】本题考查了二次函数的应用,待定系数法求二次函数、一次函数解析式,二次函数的性质,相似三角形的判定与性质,等腰直角三角形的判定与性质等知识,明确题意,添加合适辅助线,合理分类讨论是解题的关键.30.(2024·四川广安·中考真题)如图,抛物线与轴交于,两点,与轴交于点,点坐标为,点坐标为.

(1)求此抛物线的函数解析式.(2)点是直线上方抛物线上一个动点,过点作轴的垂线交直线于点,过点作轴的垂线,垂足为点,请探究是否有最大值?若有最大值,求出最大值及此时点的坐标;若没有最大值,请说明理由.(3)点为该抛物线上的点,当时,请直接写出所有满足条件的点的坐标.【答案】(1)(2)的最大值为,点的坐标为(3)点的坐标为或【分析】(1)直接利用抛物线的交点式可得抛物线的解析式;(2)先求解,及直线为,设,可得,再建立二次函数求解即可;(3)如图,以为对角线作正方形,可得,与抛物线的另一个交点即为,如图,过作轴的平行线交轴于,过作于,则,设,则,求解,进一步求解直线为:,直线为,再求解函数的交点坐标即可.【详解】(1)解:∵抛物线与轴交于,两点,与轴交于点,点坐标为,点坐标为.∴;(2)解:当时,,∴,设直线为,∴,解得:,∴直线为,设,∴,∴;当时,有最大值;此时;(3)解:如图,以为对角线作正方形,∴,∴与抛物线的另一个交点即为,如图,过作轴的平行线交轴于,过作于,则,∴,∴,∴,∵,∴,∴,,设,则,∴,∴,由可得:∴,解得:,∴,设为:,∴,解得:,∴直线为:,∴,解得:或,∴,∵,,,正方形,∴,同理可得:直线为,∴,解得:或,∴,综上:点的坐标为或.【点睛】本题考查的是利用待定系数法求解抛物线的解析式,抛物线的性质,正方形的性质,作出合适的辅助线是解本题的关键.31.(2024·山东烟台·中考真题)如图,抛物线与轴交于,两点,与轴交于点,,,对称轴为直线,将抛物线绕点旋转后得到新抛物线,抛物线与轴交于点,顶点为,对称轴为直线.(1)分别求抛物线和的表达式;(2)如图,点的坐标为,动点在直线上,过点作轴与直线交于点,连接,.求的最小值;(3)如图,点的坐标为,动点在抛物线上,试探究是否存在点,使?若存在,请直接写出所有符合条件的点的坐标;若不存在,请说明理由.【答案】(1),(2)(3)存在,或【分析】(1)先求出点A、B、C坐标,再用待定系数法求出抛物线的表达式,求出其顶点坐标,由旋转可知抛物线的二次项系数为原来的相反数,顶点坐标与抛物线的顶点坐标关于原点对称,即可求解;(2)将点F向右平移2个单位至,则,,过点D作直线的对称点为,连接,则四边形为平行四边形,则,,因此,即可求解;(3)当点P在直线右侧抛物线上时,可得,作H关于直线的对称点,则点在直线上,可求直线的表达式为,联立,解得:或(舍),故;当点P在直线左侧抛物线上时,延长交y轴于点N,作的垂直平分线交于点Q,交y轴于点M,过点E作轴于点K,则,可得,可证明出,由,得,设,则,,在和中,由勾股定理得,解得:或(舍),所以,可求直线表达式为:,联立,解得:或(舍),故.【详解】(1)解:设对称轴与x轴交于点G,由题意得,∵对称轴为直线,∴,∴,∴,将A、B、C分别代入,得:,解得:,∴,∴,顶点为∵抛物线绕点旋转后得到新抛物线,∴抛物线的,顶点为,∴的表达式为:,即(2)解:将点F向右平移2个单位至,则,,过点D作直线的对称点为,连接,∴,∵,∴直线为直线,∵轴,∴,对于抛物线,令,则,∴,∵点D与点关于直线对称,∴点,∵轴,,∴四边形为平行四边形,∴,∴,当点三点共线时,取得最小值,而,∴的最小值为;(3)解:当点P在直线右侧抛物线上时,如图:∵抛物线,∴∵轴,∴,∵,∴,∴,作H关于直线的对称点,则点在直线上,∵点的坐标为,直线:,∴,设直线的表达式为:,代入,,得:,解得:,∴直线的表达式为,联立,得:,解得:或(舍),∴;②当点P在直线左侧抛物线上时,延长交y轴于点N,作的垂直平分线交于点Q,交y轴于点M,过点E作轴于点K,则,如图:∵垂直平分,∴,∴,∴,∵∴,∴,由点得:,∵,∴,∴,∴,设,∴,,在和中,由勾股定理得,∴,解得:或(舍)∴,∴,∴,设直线表达式为:,代入点N,E,得:,解得:∴直线表达式为:,联立,得:,整理得:解得:或(舍),∴,综上所述,或.【点睛】本题是一道二次函数与角度有关的综合题,考查了待定系数法求函数解析式,三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论