版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第=page11页,共=sectionpages11页2023-2024学年重庆八中高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。1.已知点A(−2,−3),B(2,2),C(1,3),若四边形ABCD为平行四边形,则点D的坐标为(
)A.(−1,−4) B.(−3,−2) C.(5,8) D.(−1,0)2.若(1+i)z−=1−i,则复数z的虚部为A.−1 B.0 C.1 D.23.在△ABC中,a=3,A=60°,B=75°,则△ABC中最小的边长为A.22 B.62 C.4.已知向量a与b的夹角为π4,若|a|=1,b=(1,1),则A.1 B.2−1 C.25.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列说法正确的是(
)A.若m//n,n⊂α,则m//α
B.若m//α,n//β,α//β,则m//n
C.若m⊂α,n⊂β,m//n,则α//β
D.若α∩β=m,n//β,n//α,则m//n6.在△ABC中,角A,B,C的对边分别为a,b,c,若ba+c=1−sinCsinA+sinB,a=3,b=22A.33 B.63 C.7.若函数y=3cos(ωx+φ)(ω>0,−π<φ<π)的部分图象如图所示,M(−3,3),N(1,−3)为图象上的两个顶点.设∠MON=θA.−6+24 B.8.在矩形ABCD中,AB=2,AD=23,沿对角线AC将矩形折成一个大小为θ的二面角B−AC−D,当点B与点D之间的距离为3时,cosθ=(
)A.13 B.16 C.−1二、多选题:本题共3小题,共18分。在每小题给出的选项中,有多项符合题目要求。9.设z1,z2为复数,下列说法正确的是(
)A.|z1|2=z12 B.|z1z2|=|10.已知△ABC内角A,B,C的对边分别为a,b,c,外接圆半径为R.若a=1,且sinA−bsinB=(c+b)sinC,则(
)A.△ABC面积的最大值为34 B.sinA=32
C.BC11.在正四棱台ABCD−A1B1C1A.若侧棱长为3,则该棱台的体积为283
B.若正四棱台的各顶点均在一个半径为10的球面上,则该棱台的体积为282
C.若正四棱台内部存在一个与棱台各面均相切的球,则该棱台的侧棱长为10
D.若侧棱长为3,Q为棱三、填空题:本题共3小题,每小题5分,共15分。12.将函数y=2sin2x的图象向左平移π6后得到函数y=g(x)的图象,则g(π6)=13.一个圆锥的母线长为2,当它的轴截面面积最大时,该圆锥的表面积为______.14.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成,如图①),类比“赵爽弦图”,可构造如图②所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,其中2DF=3FA,则S△DEFS△ABC的值为______;设AD四、解答题:本题共5小题,共77分。解答应写出文字说明,证明过程或演算步骤。15.(本小题13分)
如图,在棱长为2的正方体ABCD−A1B1C1D1中,E,F分别为BB1,BC的中点.
(1)证明:DF//16.(本小题15分)
已知a=(m−1,2),b=(1,m).
(1)若|a+b|=2且m<0,求a在b方向上的投影向量;
(2)若a与17.(本小题15分)
已知函数f(x)=2sinx⋅cosx+23cos2x−3.
(1)求f(x)的最小正周期和单调区间;
(2)若f(α)=18.(本小题17分)
如图1,在平面四边形ABCD中,AB=2,AD=1,∠A=90°,CD=5,cos∠BDC=15,将△BCD沿BD折起,形成如图2所示的三棱锥C−DAB,且AC=2.
(1)证明:AC⊥面ABD;
(2)在三棱锥C−DAB中,点E,F,G分别为线段AB,BD,AD的中点,设平面CEF与平面ADC的交线为l.
①证明:l//AD;
②若Q为l上的动点,求直线CF19.(本小题17分)
在△ABC中,角A,B,C对应的边分别为a,b,c.若a=3,(2b−c)cosA=acosC,P是△ABC内任一点,过点P作AB,BC,AC的垂线,垂足分别为D,E,F.
(1)求A;
(2)若P为△ABC的内心且bc=73,求线段PD的长度;
(3)法国著名数学家柯西在数学领域有非常高的造诣,很多数学的定理和公式都以他的名字来命名,如柯西不等式、柯西积分公式.其中柯西不等式在解决不等式证明的有关问题中有着广泛的应用.借助三维分式型柯西不等式:若y1,y2,y3∈R+,则x12参考答案1..B
2..C
3..C
4..A
5..D
6..A
7..A
8..B
9..BC
10..BC
11..ACD
12..313..2(14..313
3515..解:(1)证明:设AD1∩A1D=O,连接B1C,EF,OE,
因为E,F分别为BB1,BC的中点,则EF//B1C,且EF=12B1C,
又因为A1B1//CD,且A1B1=CD,则A1B1CD为平行四边形,
可得A1D//B1C,且A1D=B1C,
因为O为A1D的中点,则OD//B1C,且OD=12B1C,
可得EF//OD,且EF=OD,
可知DFEO为平行四边形,则DF//OE,且DF⊄平面D1AE,OE⊂平面D1AE,
所以DF//平面D1AE;
(2)取CC1的中点G,连接GE,DG,
因为G,E分别为CC1,BB1的中点,
则GE//BC,且GE=BC,
又因为AD//BC,且AD=BC,则GE//AD,且GE=AD,
可得ADGE为平行四边形,可知平面ADE即为平面ADGE,
过D1作D1M⊥DG,垂足为M,过M作MN//AD,交AE于点N,连接D1N,
因为AD⊥平面DCC1D1,D1M⊂平面DCC1D1,
则D1M⊥AD,且AD∩DG=D,AD,DG⊂平面ADGE,则D1M⊥平面ADGE,
由AE⊂平面ADGE可得DM⊥AE,
又因为AD⊥平面ABB1A1,AE⊂平面ABB1A1,
则16..解:(1)因为a=(m−1,2),b=(1,m),所以a+b=(m,2+m),
所以|a+b|=m2+(2+m)2=2,解得m=−2或0,又m<0,
所以m=−2,所以a=(−3,2),b=(1,−2),
设向量a与b的夹角为θ,与b同向的单位向量为e,
则e=b|b|=15(1,−2)=(55,−255),
因为a⋅b=|a||b|cosθ,所以|a|cosθ=a⋅b|b|=−3×1+2×(−2)5=−755,
所以a在b方向上的投影向量为17..解:(1)f(x)=2sinx⋅cosx+23cos2x−3
=sin2x+3(1+cos2x)−3
=sin2x+3cos2x
=2sin(2x+π3),
函数f(x)的最小正周期为T=2π2=π,
令2x+π3∈[2kπ−π2,2kπ+π2](k∈Z),
解得x∈[kπ−5π12,kπ+π12](k∈Z),
所以函数f(x)的单调增区间是[kπ−5π12,kπ+π12](k∈Z),
令2x+π3∈[2kπ+π18..证明:(1)在Rt△ABD中,BD=AB2+AD2=22+12=5,
在△BCD中,由余弦定理得BC2=BD2+CD2−2BD⋅CD⋅cos∠BDC=8,即BC=22,
因为AC=2,则CD2=AD2+AC2,BC2=AC2+AB2,
可得AD⊥AC,AB⊥AC,
因为AD∩AB=A,AD,AB⊂平面ABD,
所以AC⊥平面ABD.
(2)①因为点E,F分别为线段AB,BD的中点,
则EF//AD,且EF=12AD=12,
由EF⊂平面CEF,AD⊄平面CEF,
得AD//平面CEF,
又因为AD⊂平面ADC,
且平面CEF∩平面ADC=l,
所以l//AD.
②解:因为l//AD,且C∈平面CEF,C∈平面ADC,
可知C∈l,则l⊂平面ADC,
规定点C为起点,CQ方向为正方向,设CQ=m∈R,
过点C作平面CMN//平面QGE,如图所示:
可知:直线CF与平面QGE所成角即为直线CF与平面CMN所成角,设为θ,
则AM=|m−12|,EN=|m|,FN=|m+12|,
可得CM=4+(m−12)2,MN=52CN=m2+5,CF=21219..解:(1)因为(2b−c)cosA=acosC,
由正弦定理可得(2sinB−sinC)cosA=sinAcosC,
整理可得2sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,
且B∈(0,π),则siB≠0,可得cosA=12,
又A∈(0,π),所以A=π3.
(2)因为A=π3,bc=73,a=3,
由余弦定理可得a2=b2+c2−2bccosA=(b+c)2−2bc−2bccos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 留置针相关知识课件
- 《消台春促产品培训》课件
- 《企业诊断报告讲》课件
- 纳雍登科城市展厅开放活动企划案
- 江苏省无锡市滨湖区2024-2025学年上学期九年级期中考试数学试题(无答案)
- 篮球运球课件教学
- 《微生物学生态》课件
- 2024年新高一语文初升高衔接《词语的运用》含答案解析
- 最美民族风课件
- 电砂轮机用砂轮产业规划专项研究报告
- 建筑公司财务管理制度及流程
- 2024至2030年中国发光字边底数据监测研究报告
- 行政复议法-形考作业4-国开(ZJ)-参考资料
- 特种设备锅炉日管控、周排查、月调度主要项目及内容表
- 立井更换首绳安全技术措施
- 汽车空调制冷不良故障诊断与检修毕业论文
- 酒店装修施工进度表
- 华能电厂班组安全管理标准化手册
- 鲁教版九年级上册化学全册教案
- 140t干熄焦工程监理11页
- 建设部十项新技术的内容和应用措施
评论
0/150
提交评论