重庆市綦江、长寿、巴南三校联盟2022-2023学年九年级数学第一学期期末经典模拟试题含解析_第1页
重庆市綦江、长寿、巴南三校联盟2022-2023学年九年级数学第一学期期末经典模拟试题含解析_第2页
重庆市綦江、长寿、巴南三校联盟2022-2023学年九年级数学第一学期期末经典模拟试题含解析_第3页
重庆市綦江、长寿、巴南三校联盟2022-2023学年九年级数学第一学期期末经典模拟试题含解析_第4页
重庆市綦江、长寿、巴南三校联盟2022-2023学年九年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是()A. B. C. D.2.如图2,在平面直角坐标系中,点的坐标为(1,4)、(5,4)、(1、),则外接圆的圆心坐标是A.(2,3) B.(3,2) C.(1,3) D.(3,1)3.如图是一根电线杆在一天中不同时刻的影长图,试按其天中发生的先后顺序排列,正确的是()A.①②③④ B.④①③② C.④②③① D.④③②①4.二次函数y=x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.35.已知的半径为,点到直线的距离为,若直线与公共点的个数为个,则可取()A. B. C. D.6.解方程,选择最适当的方法是()A.直接开平方法 B.配方法 C.公式法 D.因式分解法7.已知关于的一元二次方程有两个实数根,,则代数式的值为()A. B. C. D.8.如图,△ABC是一张周长为18cm的三角形纸片,BC=5cm,⊙O是它的内切圆,小明用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线剪下△AMN,则剪下的三角形的周长为()A. B. C. D.随直线的变化而变化9.用配方法解方程,下列变形正确的是()A. B. C. D.10.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A. B. C.2 D.2二、填空题(每小题3分,共24分)11.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.12.若△ABC∽△A′B′C′,且,△ABC的周长为12cm,则△A′B′C′的周长为_____________.13.如图所示,在中,、相交于点,点是的中点,联结并延长交于点,如果的面积是4,那么的面积是______.14.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.15.如果a,b,c,d是成比例线段,其中a=2cm,b=6cm,c=5cm,则线段d=_______cm.16.如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于________.17.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系是h=+20t+1,若此礼炮在升空到最高处时引爆,到引爆需要的时间为_____s.18.如图,在平面直角坐标系中有两点和,以原点为位似中心,相似比为,把线段缩短为线段,其中点与点对应,点与点对应,且在y轴右侧,则点的坐标为________.三、解答题(共66分)19.(10分)如图,在正方形中,,点在正方形边上沿运动(含端点),连接,以为边,在线段右侧作正方形,连接、.小颖根据学习函数的经验,在点运动过程中,对线段、、的长度之间的关系进行了探究.下面是小颖的探究过程,请补充完整:(1)对于点在、边上的不同位置,画图、测量,得到了线段、、的长度的几组值,如下表:位置位置位置位置位置位置位置在、和的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数.(2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象:(3)结合函数图像,解决问题:当为等腰三角形时,的长约为20.(6分)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).21.(6分)某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y(件)与销售单价x(元)之间的关系如图所示.(1)根据图象直接写出y与x之间的函数关系式.(2)设这种商品月利润为W(元),求W与x之间的函数关系式.(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?22.(8分)已知关于x的一元二次方程x2-(2m+3)x+m2+2=0。(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为,且满足,求实数m的值。23.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.24.(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2016年的绿色建筑面积约为950万平方米,2018年达到了1862万平方米.若2017年、2018年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2019年我市计划推行绿色建筑面积达到2400万平方米.如果2019年仍保持相同的年平均增长率,请你预测2019年我市能否完成计划目标?25.(10分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.26.(10分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.(1)求y与x的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?

参考答案一、选择题(每小题3分,共30分)1、B【分析】求出△ABC的三边长,再分别求出选项A、B、C、D中各三角形的三边长,根据三组对应边的比相等判定两个三角形相似,由此得到答案.【详解】如图,,AC=2,,A、三边依次为:,,1,∵,∴A选项中的三角形与不相似;B、三边依次为:、、1,∵,∴B选项中的三角形与相似;C、三边依次为:3、、,∵,∴C选项中的三角形与不相似;D、三边依次为:、、2,∵,∴D选项中的三角形与不相似;故选:B.【点睛】此题考查网格中三角形相似的判定,勾股定理,需根据勾股定理分别求每个三角形的边长,判断对应边的比是否相等是解题的关键.2、D【解析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.解答:解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.3、B【分析】北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.【详解】根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北−北−东北−东,即④①③②故选:B.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.4、B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.5、A【分析】根据直线和圆的位置关系判断方法,可得结论.【详解】∵直线m与⊙O公共点的个数为2个,

∴直线与圆相交,

∴d<半径,∴d<3,

故选:A.【点睛】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d:①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l和⊙O相离⇔d>r.6、D【解析】根据方程含有公因式,即可判定最适当的方法是因式分解法.【详解】由已知,得方程含有公因式,∴最适当的方法是因式分解法故选:D.【点睛】此题主要考查一元二次方程解法的选择,熟练掌握,即可解题.7、B【分析】由题意根据根与系数的关系以及方程的解的概念即可求出答案.【详解】解:由根与系数的关系可知:,∴1+n=-m,n=3,∴m=-4,n=3,∴.故选:B.【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系求值与代入求值.8、B【分析】如图,设E、F、G分别为⊙O与BC、AC、MN的切点,利用切线长定理得出BC=BD+CF,DM=MG,FN=GN,AD=AF,进而可得答案.【详解】设E、F、G分别为⊙O与BC、AC、MN的切点,∵⊙O是△ABC的内切圆,∴BD=BE,CF=CE,AD=AF,∴BD+CF=BC,∵MN与⊙O相切于G,∴DM=MG,FN=GN,∵△ABC的周长为18cm,BC=5cm,∴AD+AF=18-BC-(BD+CF)=18-2BC=8cm,∴△AMN的周长=AM+AN+MG+GN=AM+DM+AN+FN=AD+AF=8cm,故选:B.【点睛】本题考查切线长定理,从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角;熟练掌握定理是解题关键.9、D【解析】等式两边同时加上一次项系数一半的平方,利用完全平方公式进行整理即可.【详解】解:原方程等式两边同时加上一次项系数一半的平方得,,整理后得,,故选择D.【点睛】本题考查了配方法的概念.10、D【解析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为BC•AD==,S扇形BAC==,∴莱洛三角形的面积S=3×﹣2×=2π﹣2,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.二、填空题(每小题3分,共24分)11、5.【详解】试题解析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.12、16cm【分析】根据相似三角形周长的比等于相似比求解.【详解】解:∵△ABC∽△A′B′C′,且,即相似三角形的相似比为,

∵△ABC的周长为12cm

∴△A′B′C′的周长为12÷=16cm.故答案为:16.【点睛】此题考查相似三角形的性质,解题关键在于掌握相似三角形周长的比等于相似比.13、36【分析】首先证明△AFE∽△CBE,然后利用对应边成比例,E为OA的中点,求出AE:EC=1:3,即可得出.【详解】在平行四边形ABCD中,AD∥BC,

则△AFE∽△CBE,

∴,

∵O为对角线的交点,

∴OA=OC,

又∵E为OA的中点,

∴AE=AC,

则AE:EC=1:3,

∴AF:BC=1:3,

∴即∴=36故答案为:36【点睛】本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.14、7【解析】试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.15、15【分析】根据比例线段的定义即可求解.【详解】由题意得:将a,b,c的值代入得:解得:(cm)故答案为:15.【点睛】本题考查了比例线段的定义,掌握比例线段的定义及其基本性质是解题关键.16、4【分析】连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,,,,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案.【详解】如图,连接并延长交于G,连接并延长交于H,∵点E、F分别是和的重心,∴,,,,∵,∴,∵,,∴,∵,∴,∴,∴,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.17、1【分析】将关系式h=t2+20t+1转化为顶点式就可以直接求出结论.【详解】解:∵h=t2+20t+1=(t﹣1)2+11,∴当t=1时,h取得最大值,即礼炮从升空到引爆需要的时间为1s,故答案为:1.【点睛】本题考查了二次函数的性质顶点式的运用,解答时将一般式化为顶点式是关键.18、【分析】根据位似变换的性质计算即可.【详解】∵以原点O为位似中心,相似比为,把线段AB缩短为线段CD,B(6,3),∴点D的坐标为:,即,故答案为:.【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.三、解答题(共66分)19、(1);(2)画图见解析;(3)或或【分析】(1)根据表格的数据,结合自变量与函数的定义,即可得到答案;(2)根据列表、描点、连线,即可得到函数图像;(3)可分为AE=DF,DF=DG,AE=DG,结合图像,即可得到答案.【详解】解:(1)根据表格可知,从0开始,而且不断增大,则DG是自变量;和随着DG的变化而变化,则AE和DF都是DG的函数;故答案为:,,.(2)函数图像,如图所示:(3)∵为等腰三角形,则可分为:AE=DF或DF=DG或AE=DG,三种情况;根据表格和函数图像可知,①当AE=DG=时,为等腰三角形;②当AE=时,DF=DG=5.00,为等腰三角形;③当AE=DF=时,为等腰三角形;故答案为:或或.【点睛】本题考查了函数的定义,自变量的定义,画函数图像,以及等腰三角形的定义,解题的关键是掌握函数的定义,准确画出函数图像.20、(1)∠ECO=∠OAC;(2)①OM=ON,理由见解析,②EM的值为m+m或m﹣m【分析】(1)结论:∠ECO=∠OAC.理由直角三角形斜边中线定理,三角形的中位线定理解决问题即可.(2)①只要证明△COM≌△AON(ASA),即可解决问题.②分两种情形:如图3﹣1中,当点N在CA的延长线上时,如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.分别求解即可解决问题.【详解】解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.【点睛】本题属于几何变换综合题,考查了直角三角形斜边中线定理、三角形中位线定理、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.21、(1)y=;(2)W=;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是1.【分析】(1)当40≤x≤60时,设y与x之间的函数关系式为y=kx+b,当60<x≤90时,设y与x之间的函数关系式为y=mx+n,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x2+210x-5400,得到当x=60时,W最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x2+390x-9000,得到当x=65时,W最大=-3×652+390×65-9000=1,于是得到结论.【详解】解:(1)当40≤x≤60时,设y与x之间的函数关系式为y=kx+b,将(40,140),(60,120)代入得,解得:,∴y与x之间的函数关系式为y=﹣x+180;当60<x≤90时,设y与x之间的函数关系式为y=mx+n,将(90,30),(60,120)代入得,解得:,∴y=﹣3x+300;综上所述,y=;(2)当40≤x≤60时,W=(x﹣30)y=(x﹣30)(﹣x+180)=﹣x2+210x﹣5400,当60<x≤90时,W=(x﹣30)(﹣3x+300)=﹣3x2+390x﹣9000,综上所述,W=;(3)当40≤x≤60时,W=﹣x2+210x﹣5400,∵﹣1<0,对称轴x==105,∴当40≤x≤60时,W随x的增大而增大,∴当x=60时,W最大=﹣602+210×60﹣5400=3600,当60<x≤90时,W=﹣3x2+390x﹣9000,∵﹣3<0,对称轴x==65,∵60<x≤90,∴当x=65时,W最大=﹣3×652+390×65﹣9000=1,∵1>3600,∴当x=65时,W最大=1,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是1.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.根据题意分情况建立二次函数的模型是解题的关键.22、(1);(1)1【分析】(1)根据方程有实数根结合根的判别式,即可得出关于m的一元一次不等式,解之即可得出结论;(1)利用根与系数的关系可得出x1+x1=1m+3,x1•x1=m1+1,结合x11+x11=31+x1x1即可得出关于m的一元二次方程,解之即可得出m的值.【详解】解:(1)∵方程x1-(1m+3)x+m1+1=0有实数根,∴△=[-(1m+3)]1-4(m1+1)=11m+1≥0,解得:.(1)∵方程x1-(1m+3)x+m1+1=0的两个根分别为x1、x1,∴x1+x1=1m+3,x1•x1=m1+1,∵x11+x11=31+x1x1,∴(x1+x1)1-1x1•x1=31+x1x1,即m1+11m-18=0,解得:m1=1,m1=-14(舍去),∴实数m的值为1.【点睛】本题考查了根与系数的关系以及根的判别式,熟练掌握当一元二次方程有实数根时根的判别式△≥0是解题的关键.23、12.1m.【分析】首先根据题意分析图形,本题涉及到两个直角三角形,分别解可得BG与EF的大小,进而求得BE、AE的大小,再利用AB=BE-AE可求出答案.【详解】解:作DG⊥AE于G,则∠BDG=α,易知四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×=15m,∴BE=15+1.6=16.6m.∵斜坡FC的坡比为iFC=1:10,CE=35m,∴EF=35×=3.5,∵AF=1,∴AE=AF+EF=1+3.5=4.5,∴AB=BE-AE=16.6-4.5=12.1m.答:旗杆AB的高度为12.1m.【点睛】本题考查解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.24、(1)这两年我市推行绿色建筑面积的年平均增长率为40%;(2)如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【分析】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论