泰州市重点中学2022年数学九年级第一学期期末经典试题含解析_第1页
泰州市重点中学2022年数学九年级第一学期期末经典试题含解析_第2页
泰州市重点中学2022年数学九年级第一学期期末经典试题含解析_第3页
泰州市重点中学2022年数学九年级第一学期期末经典试题含解析_第4页
泰州市重点中学2022年数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如果,那么代数式的值是().A.2 B. C. D.2.下列事件中,属于必然事件的是()A.任意画一个正五边形,它是中心对称图形B.某课外实践活动小组有13名同学,至少有2名同学的出生月份相同C.不等式的两边同时乘以一个数,结果仍是不等式D.相等的圆心角所对的弧相等3.如图所示的网格是正方形网格,则sinA的值为()A. B. C. D.4.如图,直线AC,DF被三条平行线所截,若DE:EF=1:2,AB=2,则AC的值为()A.6 B.4 C.3 D.5.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=96.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30° B.40° C.50° D.60°7.如图,在中,点分别在边上,且为边延长线上一点,连接,则图中与相似的三角形有()个A. B. C. D.8.如图,抛物线交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=-1,则b=4;④抛物线上有两点P(,)和Q(,),若<1<,且+>2,则>.其中结论正确的序号是()A.①② B.①②③ C.①②④ D.②③④9.二次函数与的图象与x轴有交点,则k的取值范围是A. B.且 C. D.且10.如图,点A、B、C在⊙O上,∠A=50°,则∠BOC的度数为()A.130° B.50° C.65° D.100°二、填空题(每小题3分,共24分)11.计算:____________12.如图,一个半径为,面积为的扇形纸片,若添加一个半径为的圆形纸片,使得两张纸片恰好能组合成一个圆锥体,则添加的圆形纸片的半径为____.13.如图,菱形的边长为1,,以对角线为一边,在如图所示的一侧作相同形状的菱形,再依次作菱形,菱形,……,则菱形的边长为_______.14.计算:×=______.15.若方程有两个相等的实数根,则m=________.16.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD=______度.17.如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,那么菱形ABCD的面积是____.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,若∠CDB=30°,⊙O的半径为5cm则圆心O到弦CD的距离为_____.三、解答题(共66分)19.(10分)公司经销的一种产品,按要求必须在15天内完成销售任务.已知该产品的销售价为62元/件,推销员小李第x天的销售数量为y件,y与x满足如下关系:y=(1)小李第几天销售的产品数量为70件?(2)设第x天销售的产品成本为m元/件,m与x的函数图象如图,小李第x天销售的利润为w元,求w与x的函数关系式,并求出第几天时利润最大,最大利润是多少?20.(6分)新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB在两棵同样高度的树苗CE和DF之间,树苗高2m,两棵树苗之间的距离CD为16m,在路灯的照射下,树苗CE的影长CG为1m,树苗DF的影长DH为3m,点G、C、B、D、H在一条直线上.求路灯AB的高度.21.(6分)已知等边△ABC的边长为2,(1)如图1,在边BC上有一个动点P,在边AC上有一个动点D,满足∠APD=60°,求证:△ABP~△PCD(2)如图2,若点P在射线BC上运动,点D在直线AC上,满足∠APD=120°,当PC=1时,求AD的长(3)在(2)的条件下,将点D绕点C逆时针旋转120°到点D',如图3,求△D′AP的面积.22.(8分)如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.(1)当PE⊥AB,PF⊥BC时,如图1,则的值为;(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.23.(8分)综合与实践:如图,已知中,.(1)实践与操作:作的外接圆,连结,并在图中标明相应字母;(尺规作图,保留作图痕迹,不写作法)(2)猜想与证明:若,求扇形的面积.24.(8分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被哦感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(3)轮(为正整数)感染后,被感染的电脑有________台.25.(10分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.26.(10分)如图,AB是€⊙O的直径,点C是€€⊙O上一点,AC平分∠DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB于点F,交€€⊙O于点E.(1)求证:PC与⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan∠ABC=,求线段BE的长.

参考答案一、选择题(每小题3分,共30分)1、A【解析】(a-)·=·=·=a+b=2.故选A.2、B【分析】根据随机事件、必然事件、不可能事件的定义,分别进行判断,即可得到答案.【详解】解:A、正五边形不是中心对称图形,故A是不可能事件;B、某课外实践活动小组有13名同学,至少有2名同学的出生月份相同,是必然事件,故B正确;C、不等式的两边同时乘以一个数,结果不一定是不等式,是随机事件,故C错误;D、在同圆或等圆中,相等的圆心角所对的弧相等,故D是随机事件,故D错误;故选:B.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,解题的关键是熟练掌握定义,正确的进行判断.3、C【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵,BC=2,AD=,∵S△ABC=AB•CE=BC•AD,∴CE=,∴,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.4、A【分析】根据平行线分线段成比例定理得到比例式,求出BC,计算即可.【详解】解:∵l1∥l2∥l3,∴,又∵AB=2,∴BC=4,∴AC=AB+BC=1.

故选:A.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.5、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=1∴(x﹣1)2=1.故选:C.【点睛】此题考查利用配方法将一元二次方程变形,熟练掌握配方法的一般步骤是解题的关键.6、C【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.7、D【分析】根据平行四边形和平行线的性质,得出对应的角相等,再结合相似三角形的性质即可得出答案.【详解】∵EF∥CD,ABCD是平行四边形∴EF∥CD∥AB∴∠GDP=∠GAB,∠GPD=∠GBA∴△GDP∽△GAB又EF∥AB∴∠GEQ=∠GAB,∠GQE=∠GBA∴△GEQ∽△GAB又∵ABCD为平行四边形∴AD∥BC∴∠GDP=∠BCP,∠CBP=∠G∴∠BCP=∠GAB又∠GPD=∠BPC∴∠GBA=∠BPC∴△GAB∽△BCP又∠BQF=∠GQE∴∠BQF=∠GBA∴△GAB∽△BFQ综上共有4个三角形与△GAB相似故答案选择D.【点睛】本题考查的是相似三角形的判定,需要熟练掌握相似三角形的判定方法,此外,还需要掌握平行四边形和平行线的相关知识.8、C【分析】根据二次函数图像的基本性质依次进行判断即可.【详解】①当x=0时,y=m,∴点C的坐标为(0,m),该项正确;②当m=0时,原函数解析式为:,此时对称轴为:,且A点交于原点,∴B点坐标为:(2,0),即AB=2,∴D点坐标为:(1,1),根据勾股定理可得:BD=AD=,∴△ABD为等腰三角形,∵,∴△ABD为等腰直角三角形,该项正确;③由解析式得其对称轴为:,利用其图像对称性,∴当若a=-1,则b=3,该项错误;④∵+>2,∴,又∵<1<,∴-1<1<-1,∴Q点离对称轴较远,∴>,该项正确;综上所述,①②④正确,③错误,故选:C.【点睛】本题主要考查了二次函数图像解析式与其函数图像的性质综合运用,熟练掌握相关概念是解题关键.9、D【解析】利用△=b2-4ac≥1,且二次项系数不等于1求出k的取值范围.【详解】∵二次函数与y=kx2-8x+8的图象与x轴有交点,∴△=b2-4ac=64-32k≥1,k≠1,解得:k≤2且k≠1.故选D.【点睛】此题主要考查了抛物线与x轴的交点,熟练掌握一元二次方程根的判别式与根的关系是解题关键.10、D【解析】根据圆周角定理求解即可.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选D.【点睛】考查了圆周角定理的运用.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(每小题3分,共24分)11、1【分析】根据分式混合运算的法则计算即可.【详解】解:原式====1,故答案为:1.【点睛】本题考查了分式混合运算,主要考查学生的计算能力,掌握分式混合运算的法则是解题的关键.12、1【分析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长×母线长÷1,得到圆锥的弧长=1扇形的面积÷母线长,进而根据圆锥的底面半径=圆锥的弧长÷1π求解.【详解】解:∵圆锥的弧长=1×11π÷6=4π,

∴圆锥的底面半径=4π÷1π=1cm,

故答案为1.【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.13、【解析】过点作垂直OA的延长线与点,根据“直角三角形30°所对的直角边等于斜边的一半”求出,同样的方法求出和的长度,总结规律即可得出答案.【详解】过点作垂直OA的延长线与点根据题意可得,,则,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;过点作垂直的延长线与点则,∴,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;过点作垂直的延长线与点则,∴,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;……∴菱形的边长为;故答案为.【点睛】本题考查的是菱形,难度较高,需要熟练掌握“在直角三角形中,30°的角所对的直角边等于斜边的一半”这一基本性质.14、1.【解析】×==1,故答案为1.15、4【解析】∵方程x²−4x+m=0有两个相等的实数根,∴△=b²−4ac=16−4m=0,解之得,m=4故本题答案为:416、80【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】解:∵BC是⊙O的切线,

∴∠ABC=90°,

∴∠A=90°-∠ACB=40°,

由圆周角定理得,∠BOD=2∠A=80°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.17、1【分析】根据菱形的面积公式即可求解.【详解】∵菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,∴菱形ABCD的面积为AC×BD=×6×8=1,故答案为:1.【点睛】此题主要考查菱形面积的求解,解题的关键是熟知其面积公式.18、2.5cm.【分析】根据圆周角定理得到∠COB=2∠CDB=60°,然后根据含30度的直角三角形三边的关系求出OE即可.【详解】∵CD⊥AB,∴∠OEC=90°,∵∠COB=2∠CDB=2×30°=60°,∴OE=OC=×5=2.5,即圆心O到弦CD的距离为2.5cm.故答案为2.5cm.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.三、解答题(共66分)19、(1)小李第1天销售的产品数量为70件;(2)第5天时利润最大,最大利润为880元.【分析】(1)根据y和x的关系式,分别列出方程并求解,去掉不符合情况的解后,即可得到答案;(2)根据m与x的函数图象,列出m与x的关系式并求解系数;然后结合利润等于售价减去成本后再乘以销售数量的关系,利用一元一次函数和一元二次函数的性质,计算得到答案.【详解】(1)如果8x=70得x=>5,不符合题意;如果5x+10=70得x=1.故小李第1天销售的产品数量为70件;(2)由函数图象可知:当0≤x≤5,m=40当5<x≤15时,设m=kx+b将(5,40)(15,60)代入,得∴且b=30∴m=2x+30①当0≤x≤5时w=(62﹣40)•8x=176x∵w随x的增大而增大∴当x=5时,w最大为880;②当5<x≤15时w=(62﹣2x﹣30)(5x+10)=﹣10x2+140x+320∴当x=7时,w最大为810∵880>810∴当x=5时,w取得最大值为880元故第5天时利润最大,最大利润为880元.【点睛】本题考察了从图像获取信息、一元一次函数、一元二次函数的知识;求解本题的关键为熟练掌握一元一次和一元二次函数的性质,并结合图像计算得到答案.20、10m【分析】设BC的长度为x,根据题意得出△GCE∽△GBA,△HDF∽△HBA,进而利用相似三角形的性质列出关于x的方程.【详解】解:设BC的长度为xm由题意可知CE∥AB∥DF∵CE∥AB∴△GCE∽△GBA,△HDF∽△HBA∴,即==,即=∴=∴x=4∴AB=10答:路灯AB的高度为10m.【点睛】此题主要考查了相似三角形的应用,得出△GCE∽△GBA,△HDF∽△HBA是解题关键.21、(1)见解析;(2);(3)【分析】(1)先利用三角形的内角和得出∠BAP+∠APB=120°,再用平角得出∠APB+∠CPD=120°,进而得出∠BAP=∠CPD,即可得出结论;(2)先构造出含30°角的直角三角形,求出PE,再用勾股定理求出PE,进而求出AP,再判断出△ACP∽∠APD,得出比例式即可得出结论;(3)先求出CD,进而得出CD',再构造出直角三角形求出D'H,进而得出D'G,再求出AM,最后用面积差即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,在△ABP中,∠B+∠APB+∠BAP=180°,∴∠BAP+∠APB=120°,∵∠APB+∠CPD=180°﹣∠APD=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD;(2)如图2,过点P作PE⊥AC于E,∴∠AEP=90°,∵△ABC是等边三角形,∴AC=2,∠ACB=60°,∴∠PCE=60°,在Rt△CPE中,CP=1,∠CPE=90°﹣∠PCE=30°,∴CE=CP=,根据勾股定理得,PE=,在Rt△APE中,AE=AC+CE=2+=,根据勾股定理得,AP2=AE2+PE2=7,∵∠ACB=60°,∴∠ACP=120°=∠APD,∵∠CAP=∠PAD,∴△ACP∽△APD,∴,∴AD==;(3)如图3,由(2)知,AD=,∵AC=2,∴CD=AD﹣AC=,由旋转知,∠DCD'=120°,CD'=CD=,∵∠DCP=60°,∴∠ACD'=∠DCP=60°,过点D'作D'H⊥CP于H,在Rt△CHD'中,CH=CD'=,根据勾股定理得,D'H=CH=,过点D'作D'G⊥AC于G,∵∠ACD'=∠PCD',∴D'G=D'H=(角平分线定理),∴S四边形ACPD'=S△ACD'+S△PCD'=AC•D'G+CP•DH'=×2×+×1×=,过点A作AM⊥BC于M,∵AB=AC,∴BM=BC=1,在Rt△ABM中,根据勾股定理得,AM=BM=,∴S△ACP=CP•AM=×1×=,∴S△D'AP=S四边形ACPD'﹣S△ACP=﹣=.【点睛】此题主要考查四边形综合,解题的关键是熟知等边三角形的性质、旋转的特点及相似三角形的判定与性质、勾股定理的应用.22、(1);(2);(3)变化.证明见解析.【分析】(1)证明△APE≌△PCF,得PE=CF;在Rt△PCF中,解直角三角形求得的值即可;(2)如答图1所示,作辅助线,构造直角三角形,证明△PME∽△PNF,并利用(1)的结论,求得的值;(3)如答图2所示,作辅助线,构造直角三角形,首先证明△APM∽△PCN,求得;然后证明△PME∽△PNF,从而由求得的值.与(1)(2)问相比较,的值发生了变化.【详解】(1)∵矩形ABCD,∴AB⊥BC,PA=PC.∵PE⊥AB,BC⊥AB,∴PE∥BC.∴∠APE=∠PCF.∵PF⊥BC,AB⊥BC,∴PF∥AB.∴∠PAE=∠CPF.∵在△APE与△PCF中,∠PAE=∠CPF,PA=PC,∠APE=∠PCF,∴△APE≌△PCF(ASA).∴PE=CF.在Rt△PCF中,,∴;(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN.又∵∠PME=∠PNF=90°,∴△PME∽△PNF.∴.由(1)知,,∴.(3)变化.证明如下:如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB.∵PM∥BC,PN∥AB,∴∠APM=∠PCN,∠PAM=∠CPN.∴△APM∽△PCN.∴,得CN=2PM.在Rt△PCN中,,∴.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN.又∵∠PME=∠PNF=90°,∴△PME∽△PNF.∴.∴的值发生变化.23、(1)答案见解析;(2)【分析】(1)直角三角形外接圆的圆心在斜边中点,做出AB的垂直平分线找到斜边中点O,然后连接OC即可;(2)根据同弧所对的圆周角是圆心角的一半求出圆心角的度数,然后利用扇形面积公式进行求解.【详解】解:(1)如图所示:外接圆与线段为所求.【点睛】本题考查尺规作图和扇形面积的求法,掌握直角三角形外接圆的圆心是斜边中点,从而做出斜边的垂直平分线,熟记扇形面积公式并正确计算是本题的解题关键.24、(1)8;(2)会;(3).【分析】(1)根据题意列出一元二次方程,求解即可.(2)根据题意计算出3轮感染后被感染的电脑数,与700进行比较即可.(3)根据题中规律,写出函数关系式即可.【详解】(1)解:设每轮感染中平均每一台电脑会感染台电脑,依题意得:解得(舍去)(2)答:3轮感染后,被感染的电脑会超过700台.(3)由(1)得每轮感染中平均每一台电脑会感染8台电脑第一轮:被感染的电脑有台;第二轮:被感染的电脑有台;第三轮:被感染的电脑有台;故我们可以得出规律:轮(为正整数)感染后,被感染的电脑有台【点睛】本题考查了一元二次方程的实际应用和归纳总结题,掌握解一元二次方程的方法和找出关于n的函数关系式是解题的关键.25、(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【详解】(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论