版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若(、均不为0),则下列等式成立的是()A. B. C. D.2.如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于()A.20° B.40° C.70° D.80°3.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()A. B. C. D.4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A. B. C. D.5.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把△EFO缩小为△E′F′O,且△E′F′O与△EFO的相似比为1:2,则点E的对应点E′的坐标为()A.(2,﹣1) B.(8,﹣4)C.(2,﹣1)或(﹣2,1) D.(8,﹣4)或(﹣8,4)6.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC的度数为()A.20° B.25° C.30° D.50°7.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=20°,AD=CD,则∠DAC的度数是()A.30° B.35° C.45° D.70°8.如图,在⊙O中,是直径,是弦,于,连接,∠,则下列说法正确的个数是()①;②;③;④A.1 B.2 C.3 D.49.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A. B. C. D.10.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限11.如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A.3m B.m C.m D.4m12.若关于x的一元二次方程有实数根,则实数k的取值范围为A.,且 B.,且C. D.二、填空题(每题4分,共24分)13.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为_____.14.如图,直线与抛物线交于,两点,点是轴上的一个动点,当的周长最小时,_.15.已知二次函数的图像开口向上,则的值为________.16.学生晓华5次数学成绩为86,87,89,88,89,则这5个数据的中位数是___________.17.如图,BA是⊙C的切线,A为切点,AC=1,AB=2,点D是⊙C上的一个动点,连结BD并延长,交AC的延长线于E,则EC的最大值为_______.18.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(3,4),则点F的坐标是_____.三、解答题(共78分)19.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境,为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的四个小区进行检查,并且每个小区不重复检查.请用列表或画树状图的方法求甲组抽到小区,同时乙组抽到小区的概率.20.(8分)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映:每涨价1元,每星期要少卖出10件.(1)每件商品涨价多少元时,每星期该商品的利润是4000元?(2)每件商品的售价为多少元时,才能使每星期该商品的利润最大?最大利润是多少元?21.(8分)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求FC的长.22.(10分)(1)如图1,在中,点在边上,且,,求的度数;(2)如图2,在菱形中,,请设计三种不同的分法(只要有一条分割线段不同就视为不同分法),将菱形分割成四个三角形,使得每个三角形都是等腰三角形(不要求写画法,要求画出分割线段,标出所得三角形内角的度数).23.(10分)某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元,在销售过程中发现,月销售量(件)与销售单价(万元)之间存在着如图所示的一次函数关系(1)求关于的函数关系式.(2)试写出该公司销售该种产品的月获利(万元)关于销售单价(万元)的函数关系式,当销售单价为何值时,月获利最大?并求这个最大值.(月获利=月销售额一月销售产品总进价一月总开支)24.(10分)如图,已知点B的坐标是(-2,0),点C的坐标是(8,0),以线段BC为直径作⊙A,交y轴的正半轴于点D,过B、C、D三点作抛物线.(1)求抛物线的解析式;(2)连结BD,CD,点E是BD延长线上一点,∠CDE的角平分线DF交⊙A于点F,连结CF,在直线BE上找一点P,使得△PFC的周长最小,并求出此时点P的坐标;(3)在(2)的条件下,抛物线上是否存在点G,使得∠GFC=∠DCF,若存在,请直接写出点G的坐标;若不存在,请说明理由.25.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.26.在中,是边上的中线,点在射线上,过点作交的延长线于点.(1)如图1,点在边上,与交于点证明:;(2)如图2,点在的延长线上,与交于点.①求的值;②若,求的值
参考答案一、选择题(每题4分,共48分)1、D【分析】直接利用比例的性质分别判断得出答案.【详解】解:A、,则xy=21,故此选项错误;
B、,则xy=21,故此选项错误;
C、,则3y=7x,故此选项错误;
D、,则3x=7y,故此选项正确.
故选:D.【点睛】此题主要考查了比例的性质,正确将比例式变形是解题关键.2、C【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.3、B【分析】连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S扇形-S△ODC即可求得.【详解】连接OD、OC,∵AB是直径,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD=2∠DBC=90°,∴S阴影=S扇形−S△ODC=−×3×3=−.故答案选B.【点睛】本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.4、C【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.5、C【分析】利用位似图形的性质,即可求得点E的对应点E'的坐标.【详解】∵点E(﹣4,2),以O为位似中心,按2:1的相似比把△EFO缩小为△E'F'O,∴点E的对应点E'的坐标为:(2,﹣1)或(﹣2,1).故选C.【点睛】本题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解答此题的关键.6、B【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到,然后根据圆周角定理计算∠ADC的度数.【详解】∵的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴,∴∠ADC=∠BOC=25°.故选B.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.7、B【分析】连接BD,如图,利用圆周角定理得到∠ADB=90°,∠DBC=∠BAC=20°,则∠ADC=110°,然后根据等腰三角形的性质和三角形内角和计算∠DAC的度数.【详解】解:连接BD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DBC=∠BAC=20°,∴∠ADC=90°+20°=110°,∵DA=DC,∴∠DAC=∠DCA,∴∠DAC=(180°﹣110°)=35°.故选:B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.8、C【分析】先根据垂径定理得到,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【详解】∵AB⊥CD,∴,CE=DE,②正确,∴∠BOC=2∠BAD=40°,③正确,∴∠OCE=90°−40°=50°,④正确;又,故①错误;故选:C.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.9、B【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中球的总数为:2+3=5,有2个黄球,∴从袋子中随机摸出一个球,它是黄球的概率为:.故选B.10、C【分析】根据反比例函数中k0,图像必过二、四象限即可解题.【详解】解:∵-10,根据反比例函数性质可知,反比例函数y=﹣的图象在第二、四象限,故选C.【点睛】本题考查了反比例函数的图像和性质,属于简单题,熟悉反比例函数的性质是解题关键.11、C【详解】如图,由题意得:AP=3,AB=6,∴在圆锥侧面展开图中故小猫经过的最短距离是故选C.12、A【解析】∵原方程为一元二次方程,且有实数根,∴k-1≠0且△=62-4×(k-1)×3=48-12k≥0,解得k≤4,∴实数k的取值范围为k≤4,且k≠1,故选A.二、填空题(每题4分,共24分)13、2π【解析】试题分析:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB=,即圆锥的母线长为2,∴圆锥的侧面积=.考点:圆锥的计算.14、.【分析】根据轴对称,可以求得使得的周长最小时点的坐标,然后求出点到直线的距离和的长度,即可求得的面积,本题得以解决.【详解】联立得,解得,或,∴点的坐标为,点的坐标为,∴,作点关于轴的对称点,连接与轴的交于,则此时的周长最小,点的坐标为,点的坐标为,设直线的函数解析式为,,得,∴直线的函数解析式为,当时,,即点的坐标为,将代入直线中,得,∵直线与轴的夹角是,∴点到直线的距离是:,∴的面积是:,故答案为.【点睛】本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.15、2【分析】根据题意:的最高次数为2,由开口向上知二次项系数大于0,据此求解即可.【详解】∵是二次函数,
∴,即
解得:,
又∵图象的开口向上,
∴,
∴.故答案为:.【点睛】本题综合考查了二次函数的性质及定义,要注意二次项系数的取值范围.16、1【分析】根据中位数的概念求解即可.【详解】这组数据按照从小到大的顺序排列为:86,87,1,89,89,
则这5个数的中位数为:1.
故答案为:1.【点睛】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17、【分析】连接BC,过C作于点F,由图易知,当,即BD与圆相切时,CE最大,设EC最大值为x,根据相似三角形的性质得到,代入求值即可;【详解】连接BC,过C作于点F,由图易知,当,即BD与圆相切时,CE最大,设EC最大值为x,∵,∴,∴,∴,即,解得;故答案是.【点睛】本题主要考查了相似三角形对应线段成比例和圆的切线性质,准确计算是解题的关键.18、(6,).【分析】过点D作DM⊥OB,垂足为M,先根据勾股定理求出菱形的边长,即可得到点B、D的坐标,进而可根据菱形的性质求得点A的坐标,进一步即可求出反比例函数的解析式,再利用待定系数法求出直线BC的解析式,然后解由直线BC和反比例函数的解析式组成的方程组即可求出答案.【详解】解:过点D作DM⊥OB,垂足为M,∵D(3,4),∴OM=3,DM=4,∴OD==5,∵四边形OBCD是菱形,∴OB=BC=CD=OD=5,∴B(5,0),C(8,4),∵A是菱形OBCD的对角线交点,∴A(4,2),代入y=,得:k=8,∴反比例函数的关系式为:y=,设直线BC的关系式为y=kx+b,将B(5,0),C(8,4)代入得:,解得:k=,b=﹣,∴直线BC的关系式为y=x﹣,将反比例函数与直线BC联立方程组得:,解得:,(舍去),∴F(6,),故答案为:(6,).【点睛】本题考查了菱形的性质、勾股定理、待定系数法求函数的解析式以及求两个函数的交点等知识,属于常考题型,正确作出辅助线、熟练掌握上述知识是解题的关键.三、解答题(共78分)19、.【分析】利用树状图得出所有可能的结果数和甲组抽到小区,同时乙组抽到小区的结果数,然后根据概率公式求解即可.【详解】解:画树状图如下:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率=.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握用树状图或列表法求解的方法是解题的关键.20、(1)20;(2)65,1.【分析】(1)每件涨价x元,则每件的利润是(60-40+x)元,所售件数是(300-10x)件,根据利润=每件的利润×所售的件数列方程,即可得到结论;
(2)设每件商品涨价m元,每星期该商品的利润为W,根据题意先列出函数解析式,再由函数的性质即可求得如何定价才能使利润最大.【详解】解:(1)设每件商品涨价x元,
根据题意得,(60-40+x)(300-10x)=4000,
解得:x1=20,x2=-10,(不合题意,舍去),
答:每件商品涨价20元时,每星期该商品的利润是4000元;
(2)设每件商品涨价m元,每星期该商品的利润为W,
∴W=(60-40+m)(300-10m)=-10m2+100m+6000=-10(m-5)2+1
∴当m=5时,W最大值.
∴60+5=65(元),
答:每件定价为65元时利润最大,最大利润为1元.【点睛】本题主要考查了二次函数的应用,最值问题一般的解决方法是转化为函数问题,根据函数的性质求解.21、4cm【解析】试题分析:想求得FC,EF长,那么就需求出BF的长,利用直角三角形ABF,使用勾股定理即可求得BF长.试题解析:折叠长方形一边AD,点D落在BC边的点F处,所以AF=AD=BC=10厘米(2分)在Rt△ABF中,AB=8厘米,AF=10厘米,由勾股定理,得AB2+BF2=AF2∴82+BF2=102∴BF=6(厘米)∴FC=10-6=4(厘米).答:FC长为4厘米.考点:1.翻折变换(折叠问题);2.矩形的性质.22、(1);(2)详见解析.【分析】(1)设,利用等边对等角,可得,,根据三角形外角的性质可得,再根据等边对等角和三角形的内角和公式即可求出x,从而求出∠B.(2)根据等腰三角形的定义和判定定理画图即可.【详解】证明:(1)设∵∴又∵∴∴又∵∴又∵∴解出:∴(2)根据等腰三角形的定义和判定定理,画出如下图所示,(任选其三即可).【点睛】此题考查的是等腰三角形的性质及判定,掌握等边对等角、等角对等边和方程思想是解决此题的关键.23、(1);(2)当x=10万元时,最大月获利为7万元【分析】(1)根据函数图象,利用待定系数法求解可得;(2)根据“总利润=单价利润×销售量-总开支”列出函数解析式,由二次函数的性质可得最值.【详解】(1)设y=kx+b,将点(6,5)、(8,4)代入,得:,解得:,∴;(2)根据题意得:z=(x-4)y-11=(x-4)(-x+8)-11=-x2+10x-43=-(x-10)2+7,∴当x=10万元时,最大月获利为7万元.【点睛】本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式及二次函数的图象和性质是解题的关键.24、(1);(2);(3)【分析】(1)由BC是直径证得∠OCD=∠BDO,从而得到△BOD∽△DOC,根据线段成比例求出OD的长,设抛物线解析式为y=a(x+2)(x-8),将点D坐标代入即可得到解析式;(2)利用角平分线求出,得到,从而得出点F的坐标(3,5),再延长延长CD至点,可使,得到(-8,8),求出F的解析式,与直线BD的交点坐标即为点P,此时△PFC的周长最小;(3)先假设存在,①利用弧等圆周角相等把点D、F绕点A顺时针旋转90,使点F与点B重合,点G与点Q重合,则Q1(7,3),符合,求出直线FQ1的解析式,与抛物线的交点即为点G1,②根据对称性得到点Q2的坐标,再求出直线FQ2的解析式,与抛物线的交点即为点G2,由此证得存在点G.【详解】(1)∵以线段BC为直径作⊙A,交y轴的正半轴于点D,∴∠BDO+∠ODC=90,∵∠OCD+∠ODC=90,∴∠OCD=∠BDO,∵∠DOC=∠DOB=90,∴△BOD∽△DOC,∴,∵B(-2,0),C(8,0),∴,解得OD=4(负值舍去),∴D(0,4)设抛物线解析式为y=a(x+2)(x-8),∴4=a(0+2)(0-8),解得a=,∴二次函数的解析式为y=(x+2)(x-8),即.(2)∵BC为⊙A的直径,且B(-2,0),C(8,0),∴OA=3,A(3,0),∴点E是BD延长线上一点,∠CDE的角平分线DF交⊙A于点F,∴,连接AF,则,∵OA=3,AF=5∴F(3,5)∵∠CDB=90,∴延长CD至点,可使,∴(-8,8),连接F叫BE于点P,再连接PF、PC,此时△PFC的周长最短,解得F的解析式为,BD的解析式为y=2x+4,可得交点P.(3)存在;假设存在点G,使∠GFC=∠DCF,设射线GF交⊙A于点Q,①∵A(3,0),F(3,5),C(8,0),D(0,4),∴把点D、F绕点A顺时针旋转90,使点F与点B重合,点G与点Q重合,则Q1(7,3),符合,∵F(3,5),Q1(7,3),∴直线FQ1的解析式为,解,得,(舍去),∴G1;②Q1关于x轴对称点Q2(7,-3),符合,∵F(3,5),Q2(7,3),∴直线FQ2的解析式为y=-2x+11,解,得,(舍去),∴G2综上,存在点G或,使得∠GFC=∠DCF.【点睛】此题是二次函数的综合题,(1)考查待定系数法求函数解析式,需要先证明三角形相似,由此求得线段OD的长,才能求出解析式;(2)考查最短路径问题,此问的关键是求出点F的坐标,由此延长CD至点,使,得到点的坐标从而求得交点P的坐标;③是难点,根据等弧所对的圆心角相等将弧DF旋转,求出与圆的交点Q1坐标,从而求出直线与抛物线的交点坐标即点G的坐标;再根据对称性求得点Q2的坐标,再求出直线与抛物线的交点G的坐标.25、(1)b=﹣2a,顶点D的坐标为(﹣,﹣);(2);(3)2≤t<.【解析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【详解】解:(1)∵抛物线y=ax2+ax+b有一个公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度环保项目技术服务合同
- 赌场办公室租赁条款
- 全国基层退役军人服务中心(站)工作人员职业技能竞赛考试题库-下(判断、填空题)
- 北碚区恒温配送合同范例
- 研发产品合作合同范例
- 冬枣大棚搭建合同范例
- 二零二四年广告投放战略合作合同
- 明星解约合同模板
- 二零二四年度区块链技术应用居间合同
- 服务短期合同模板
- 模型压缩与轻量化
- 变压器铁芯(夹件)接地电流试验
- 教育类大学生职业生涯规划书
- 23秋国家开放大学《小学语文教学研究》形考任务1-5参考答案
- 幼儿园中班社会科学:《拜访行道树》 课件
- 超声波检验报告
- 《Linux操作系统》基于OBE-课程标准(教学大纲)
- 人工流产危害及避孕方法指导讲座
- 主变压器试验报告模板
- 旧社区改造案例课件
- 妇产科妊娠期糖尿病一病一品
评论
0/150
提交评论